Exemple #1
0
    def test_speed_01(self):
        from_axis = DailyTimeAxisBuilder(start_date=date(2000, 1, 1),
                                         end_date=date(2020, 1, 1)).build()

        to_axis = MonthlyTimeAxisBuilder(start_year=2000,
                                         end_year=2019).build()

        tc = AxisRemapper(from_axis=from_axis, to_axis=to_axis)

        from_data = np.random.random((from_axis.nelem, 100, 100))

        import time
        start = time.time()
        for i in range(1):
            tc.min(from_data)
        end = time.time()

        print(f"Took: %f [s]", end - start)

        import time
        start = time.time()
        for i in range(1):
            tc.min(from_data)
        end = time.time()

        print(f"Took: %f [s]", end - start)
Exemple #2
0
    def test_dask_min(self):
        from_axis = DailyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                         n_interval=14).build()

        to_axis = WeeklyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                        n_interval=3).build()

        tc = AxisRemapper(from_axis=from_axis,
                          to_axis=to_axis,
                          assure_no_bound_mismatch=False)
        from_data = da.arange(14, dtype='float64')
        to_data = tc.min(from_data).compute()
        np.testing.assert_almost_equal(
            to_data,
            np.array([0.0, 7.0, np.nan]).reshape(3, 1))
Exemple #3
0
    def test_min_01(self):
        from_axis = DailyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                         n_interval=14).build()

        to_axis = WeeklyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                        n_interval=2).build()

        tc = AxisRemapper(from_axis=from_axis, to_axis=to_axis)

        from_data = list(range(1, 15))

        to_data = tc.min(from_data)

        self.assertAlmostEqual(1.0, to_data[0, 0], 0)
        self.assertAlmostEqual(8.0, to_data[1, 0], 0)
Exemple #4
0
    def test_min_05(self):
        from_axis = DailyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                         n_interval=14).build()

        to_axis = WeeklyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                        n_interval=3).build()

        tc = AxisRemapper(from_axis=from_axis,
                          to_axis=to_axis,
                          assure_no_bound_mismatch=False)

        from_data = list(range(1, 15))

        to_data = tc.min(from_data)

        self.assertAlmostEqual(1.0, to_data[0, 0], 0)
        self.assertAlmostEqual(8.0, to_data[1, 0], 0)
        self.assertTrue(np.isnan(to_data[2, 0]))
Exemple #5
0
    def test_min_02(self):
        from_axis = DailyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                         n_interval=14).build()

        to_axis = WeeklyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                        n_interval=2).build()

        tc = AxisRemapper(from_axis=from_axis, to_axis=to_axis)

        from_data = np.moveaxis(
            np.asarray(list(range(1, 15)) * 12).reshape((3, 4, 14)), 2,
            0).tolist()

        to_data = tc.min(from_data)

        self.assertTrue(
            np.all(np.ones((3, 4), dtype="int") - to_data[0].round() == 0.0))
        self.assertTrue(
            np.all(
                np.ones((3, 4), dtype="int") * 8 - to_data[1].round() == 0.0))
Exemple #6
0
    def test_min_04(self):
        from_axis = DailyTimeAxisBuilder(start_date=date(2019, 1, 1),
                                         n_interval=14).build()

        to_axis = RollingWindowTimeAxisBuilder(start_date=date(2019, 1, 1),
                                               end_date=date(2019, 1, 15),
                                               window_size=7).build()

        tc = AxisRemapper(from_axis=from_axis, to_axis=to_axis)

        from_data = np.moveaxis(
            np.asarray(list(range(1, 15)) * 12).reshape((3, 4, 14)), 2,
            1).tolist()

        to_data = tc.min(from_data, dimension=1)

        for i in range(tc.to_nelem):
            self.assertTrue(
                np.all(
                    np.ones((3, 4), dtype="int") * (1 + i) -
                    to_data[:, i, :].round() == 0.0))