Exemple #1
0
    async def translation_status_checks_async(self):

        # import libraries
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.documenttranslation.aio import DocumentTranslationClient
        from azure.ai.documenttranslation import (DocumentTranslationInput,
                                                  TranslationTarget)

        # get service secrets
        endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
        key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
        source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
        target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]
        target_container_url_fr = os.environ["AZURE_TARGET_CONTAINER_URL_FR"]

        # prepare translation input
        translation_inputs = [
            DocumentTranslationInput(
                source_url=source_container_url,
                targets=[
                    TranslationTarget(target_url=target_container_url_es,
                                      language_code="es"),
                    TranslationTarget(target_url=target_container_url_fr,
                                      language_code="fr")
                ],
                storage_type="folder",
                prefix="document_2021")
        ]

        # create translation client
        client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

        # run translation job
        async with client:
            job_detail = await client.create_translation_job(translation_inputs
                                                             )
            while True:
                job_detail = await client.get_job_status(
                    job_detail.id)  # type: JobStatusResult
                if job_detail.status in ["NotStarted", "Running"]:
                    await asyncio.sleep(30)
                    continue

                elif job_detail.status in ["Failed", "ValidationFailed"]:
                    if job_detail.error:
                        print("Translation job failed: {}: {}".format(
                            job_detail.error.code, job_detail.error.message))
                    await self.check_documents(client, job_detail.id)
                    exit(1)

                elif job_detail.status == "Succeeded":
                    print("We translated our documents!")
                    if job_detail.documents_failed_count > 0:
                        await self.check_documents(client, job_detail.id)
                    break
def sample_batch_translation():
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation import (DocumentTranslationClient,
                                              DocumentTranslationInput,
                                              TranslationTarget)

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_container_url_en = os.environ["AZURE_SOURCE_CONTAINER_URL_EN"]
    source_container_url_de = os.environ["AZURE_SOURCE_CONTAINER_URL_DE"]
    target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]
    target_container_url_fr = os.environ["AZURE_TARGET_CONTAINER_URL_FR"]

    client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

    translation_inputs = [
        DocumentTranslationInput(
            source_url=source_container_url_en,
            targets=[
                TranslationTarget(target_url=target_container_url_es,
                                  language_code="es"),
                TranslationTarget(target_url=target_container_url_fr,
                                  language_code="fr")
            ]),
        DocumentTranslationInput(
            source_url=source_container_url_de,
            targets=[
                TranslationTarget(target_url=target_container_url_es,
                                  language_code="es"),
                TranslationTarget(target_url=target_container_url_fr,
                                  language_code="fr")
            ])
    ]

    job_detail = client.create_translation_job(
        translation_inputs)  # type: JobStatusResult

    print("Job initial status: {}".format(job_detail.status))
    print("Number of translations on documents: {}".format(
        job_detail.documents_total_count))

    job_result = client.wait_until_done(job_detail.id)  # type: JobStatusResult
    if job_result.status == "Succeeded":
        print("We translated our documents!")
        if job_result.documents_failed_count > 0:
            check_documents(client, job_result.id)

    elif job_result.status in ["Failed", "ValidationFailed"]:
        if job_result.error:
            print("Translation job failed: {}: {}".format(
                job_result.error.code, job_result.error.message))
        check_documents(client, job_result.id)
        exit(1)
Exemple #3
0
def sample_translation_status_checks():
    import os
    import time
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation import (DocumentTranslationClient,
                                              DocumentTranslationInput,
                                              TranslationTarget)

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
    target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]
    target_container_url_fr = os.environ["AZURE_TARGET_CONTAINER_URL_FR"]

    client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

    translation_inputs = [
        DocumentTranslationInput(
            source_url=source_container_url,
            targets=[
                TranslationTarget(target_url=target_container_url_es,
                                  language_code="es"),
                TranslationTarget(target_url=target_container_url_fr,
                                  language_code="fr")
            ],
            storage_type="folder",
            prefix="document_2021")
    ]

    job_detail = client.create_translation_job(translation_inputs)

    while True:
        job_detail = client.get_job_status(
            job_detail.id)  # type: JobStatusResult
        if job_detail.status in ["NotStarted", "Running"]:
            time.sleep(30)
            continue

        elif job_detail.status in ["Failed", "ValidationFailed"]:
            if job_detail.error:
                print("Translation job failed: {}: {}".format(
                    job_detail.error.code, job_detail.error.message))
            check_documents(client, job_detail.id)
            exit(1)

        elif job_detail.status == "Succeeded":
            print("We translated our documents!")
            if job_detail.documents_failed_count > 0:
                check_documents(client, job_detail.id)
            break
Exemple #4
0
async def sample_translation_with_glossaries_async():
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation.aio import DocumentTranslationClient
    from azure.ai.documenttranslation import (DocumentTranslationInput,
                                              TranslationTarget,
                                              TranslationGlossary)

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
    target_container_url = os.environ["AZURE_TARGET_CONTAINER_URL"]
    glossary_url = os.environ["AZURE_TRANSLATION_GLOSSARY_URL"]

    client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

    inputs = DocumentTranslationInput(
        source_url=source_container_url,
        targets=[
            TranslationTarget(target_url=target_container_url,
                              language_code="es",
                              glossaries=[
                                  TranslationGlossary(
                                      glossary_url=glossary_url,
                                      file_format="TSV")
                              ])
        ])

    async with client:
        job = await client.create_translation_job(inputs=[inputs]
                                                  )  # type: JobStatusResult

        job_result = await client.wait_until_done(job.id
                                                  )  # type: JobStatusResult

        print("Job status: {}".format(job_result.status))
        print("Job created on: {}".format(job_result.created_on))
        print("Job last updated on: {}".format(job_result.last_updated_on))
        print("Total number of translations on documents: {}".format(
            job_result.documents_total_count))

        print("\nOf total documents...")
        print("{} failed".format(job_result.documents_failed_count))
        print("{} succeeded".format(job_result.documents_succeeded_count))

        doc_results = client.list_all_document_statuses(
            job_result.id)  # type: AsyncItemPaged[DocumentStatusResult]
        async for document in doc_results:
            print("Document ID: {}".format(document.id))
            print("Document status: {}".format(document.status))
            if document.status == "Succeeded":
                print("Document location: {}".format(
                    document.translated_document_url))
                print("Translated to language: {}\n".format(
                    document.translate_to))
            else:
                print("Error Code: {}, Message: {}\n".format(
                    document.error.code, document.error.message))
def sample_document_status_checks():
    import os
    import time
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation import (DocumentTranslationClient,
                                              DocumentTranslationInput,
                                              TranslationTarget)

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
    target_container_url = os.environ["AZURE_TARGET_CONTAINER_URL"]

    client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

    job_result = client.create_translation_job(inputs=[
        DocumentTranslationInput(source_url=source_container_url,
                                 targets=[
                                     TranslationTarget(
                                         target_url=target_container_url,
                                         language_code="es")
                                 ])
    ])  # type: JobStatusResult

    completed_docs = []
    while not job_result.has_completed:
        time.sleep(30)

        doc_statuses = client.list_all_document_statuses(job_result.id)
        for document in doc_statuses:
            if document.id not in completed_docs:
                if document.status == "Succeeded":
                    print(
                        "Document at {} was translated to {} language".format(
                            document.translated_document_url,
                            document.translate_to))
                    completed_docs.append(document.id)
                if document.status == "Failed":
                    print(
                        "Document ID: {}, Error Code: {}, Message: {}".format(
                            document.id, document.error.code,
                            document.error.message))
                    completed_docs.append(document.id)
                if document.status == "Running":
                    print(
                        "Document ID: {}, translation progress is {} percent".
                        format(document.id,
                               document.translation_progress * 100))

        job_result = client.get_job_status(job_result.id)

    print("\nTranslation job completed.")
    async def custom_translation_async(self):
        # import libraries
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.documenttranslation.aio import DocumentTranslationClient
        from azure.ai.documenttranslation import (DocumentTranslationInput,
                                                  TranslationTarget)

        # get service secrets
        endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
        key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
        source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
        target_container_url_fr = os.environ["AZURE_TARGET_CONTAINER_URL_FR"]
        category_id = os.environ["AZURE_DOCUMENT_TRANSLATION_MODEL_ID"]

        # prepare translation job input
        translation_inputs = [
            DocumentTranslationInput(
                source_url=source_container_url,
                targets=[
                    TranslationTarget(target_url=target_container_url_fr,
                                      language_code="fr",
                                      category_id=category_id,
                                      glossaries=["https://exampleglossary"])
                ],
                prefix="document_2021")
        ]

        # create translation client
        client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

        # run translation job
        async with client:
            job_detail = await client.create_translation_job(translation_inputs
                                                             )

            print("Job initial status: {}".format(job_detail.status))
            print("Number of translations on documents: {}".format(
                job_detail.documents_total_count))

            job_result = await client.wait_until_done(
                job_detail.id)  # type: JobStatusResult
            if job_result.status == "Succeeded":
                print("We translated our documents!")
                if job_result.documents_failed_count > 0:
                    await self.check_documents(client, job_result.id)

            elif job_result.status in ["Failed", "ValidationFailed"]:
                if job_result.error:
                    print("Translation job failed: {}: {}".format(
                        job_result.error.code, job_result.error.message))
                await self.check_documents(client, job_result.id)
                exit(1)
Exemple #7
0
def sample_translation():
    import os
    # [START wait_until_done]
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation import (DocumentTranslationClient,
                                              DocumentTranslationInput,
                                              TranslationTarget)

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
    target_container_url = os.environ["AZURE_TARGET_CONTAINER_URL"]

    client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

    job = client.create_translation_job(inputs=[
        DocumentTranslationInput(source_url=source_container_url,
                                 targets=[
                                     TranslationTarget(
                                         target_url=target_container_url,
                                         language_code="es")
                                 ])
    ])  # type: JobStatusResult

    job_result = client.wait_until_done(job.id)  # type: JobStatusResult

    print("Job status: {}".format(job_result.status))
    print("Job created on: {}".format(job_result.created_on))
    print("Job last updated on: {}".format(job_result.last_updated_on))
    print("Total number of translations on documents: {}".format(
        job_result.documents_total_count))

    print("\nOf total documents...")
    print("{} failed".format(job_result.documents_failed_count))
    print("{} succeeded".format(job_result.documents_succeeded_count))
    # [END wait_until_done]

    # [START list_all_document_statuses]
    doc_results = client.list_all_document_statuses(
        job_result.id)  # type: ItemPaged[DocumentStatusResult]
    for document in doc_results:
        print("Document ID: {}".format(document.id))
        print("Document status: {}".format(document.status))
        if document.status == "Succeeded":
            print("Document location: {}".format(
                document.translated_document_url))
            print("Translated to language: {}\n".format(document.translate_to))
        else:
            print("Error Code: {}, Message: {}\n".format(
                document.error.code, document.error.message))
    async def cancel_translation_job_async(self):
        # import libraries
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.documenttranslation.aio import DocumentTranslationClient
        from azure.ai.documenttranslation import (DocumentTranslationInput,
                                                  TranslationTarget)

        # get service secrets
        endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
        key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
        source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
        target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]

        # prepare translation job input
        translation_inputs = [
            DocumentTranslationInput(
                source_url=source_container_url,
                targets=[
                    TranslationTarget(target_url=target_container_url_es,
                                      language_code="es")
                ],
                storage_type="file")
        ]

        # create translation client
        client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

        # run job
        async with client:
            job_detail = await client.create_translation_job(translation_inputs
                                                             )

            print("Job initial status: {}".format(job_detail.status))
            print("Number of translations on documents: {}".format(
                job_detail.documents_total_count))

            await client.cancel_job(job_detail.id)
            job_detail = await client.get_job_status(job_detail.id
                                                     )  # type: JobStatusResult

            if job_detail.status in ["Cancelled", "Cancelling"]:
                print("We cancelled job with ID: {}".format(job_detail.id))
Exemple #9
0
def sample_cancel_translation_job():
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation import (DocumentTranslationClient,
                                              DocumentTranslationInput,
                                              TranslationTarget)

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_container_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
    target_container_url_es = os.environ["AZURE_TARGET_CONTAINER_URL_ES"]

    client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))

    translation_inputs = [
        DocumentTranslationInput(source_url=source_container_url,
                                 targets=[
                                     TranslationTarget(
                                         target_url=target_container_url_es,
                                         language_code="es")
                                 ],
                                 storage_type="file")
    ]

    job_detail = client.create_translation_job(
        translation_inputs)  # type: JobStatusResult

    print("Job initial status: {}".format(job_detail.status))
    print("Number of translations on documents: {}".format(
        job_detail.documents_total_count))

    client.cancel_job(job_detail.id)
    job_detail = client.get_job_status(job_detail.id)  # type: JobStatusResult

    if job_detail.status in ["Cancelled", "Cancelling"]:
        print("We cancelled job with ID: {}".format(job_detail.id))
Exemple #10
0
    async def sample_translation_with_azure_blob(self):

        translation_client = DocumentTranslationClient(
            self.endpoint, AzureKeyCredential(self.key))

        blob_service_client = BlobServiceClient(self.storage_endpoint,
                                                credential=self.storage_key)

        source_container = await self.create_container(
            blob_service_client,
            container_name=self.storage_source_container_name
            or "translation-source-container",
        )
        target_container = await self.create_container(
            blob_service_client,
            container_name=self.storage_target_container_name
            or "translation-target-container")

        if self.document_name:
            with open(self.document_name, "rb") as doc:
                await source_container.upload_blob(self.document_name, doc)
        else:
            self.document_name = "example_document.txt"
            await source_container.upload_blob(
                name=self.document_name,
                data=
                b"This is an example translation with the document translation client library"
            )
        print("Uploaded document {} to storage container {}".format(
            self.document_name, source_container.container_name))

        source_container_sas_url = self.generate_sas_url(source_container,
                                                         permissions="rl")
        target_container_sas_url = self.generate_sas_url(target_container,
                                                         permissions="wl")

        translation_inputs = [
            DocumentTranslationInput(
                source_url=source_container_sas_url,
                targets=[
                    TranslationTarget(target_url=target_container_sas_url,
                                      language_code="fr")
                ])
        ]

        job = await translation_client.create_translation_job(
            translation_inputs)
        print("Created translation job with ID: {}".format(job.id))
        print("Waiting until job completes...")

        job_result = await translation_client.wait_until_done(job.id)
        print("Job status: {}".format(job_result.status))

        doc_results = translation_client.list_all_document_statuses(
            job_result.id)

        print("\nDocument results:")
        async for document in doc_results:
            print("Document ID: {}".format(document.id))
            print("Document status: {}".format(document.status))
            if document.status == "Succeeded":
                print("Document location: {}".format(
                    document.translated_document_url))
                print("Translated to language: {}\n".format(
                    document.translate_to))

                blob_client = BlobClient.from_blob_url(
                    document.translated_document_url,
                    credential=self.storage_key)
                async with blob_client:
                    with open("translated_" + self.document_name,
                              "wb") as my_blob:
                        download_stream = await blob_client.download_blob()
                        my_blob.write(await download_stream.readall())

                print("Downloaded {} locally".format("translated_" +
                                                     self.document_name))
            else:
                print("\nThere was a problem translating your document.")
                print("Document Error Code: {}, Message: {}\n".format(
                    document.error.code, document.error.message))

        await translation_client.close()
        await blob_service_client.close()
Exemple #11
0
def sample_batch_translation_with_storage():
    import os
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.documenttranslation import (DocumentTranslationClient,
                                              DocumentTranslationInput,
                                              TranslationTarget)
    from azure.storage.blob import ContainerClient, generate_container_sas, ContainerSasPermissions

    endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
    key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
    source_storage_endpoint = os.environ["AZURE_STORAGE_SOURCE_ENDPOINT"]
    source_storage_account_name = os.environ[
        "AZURE_STORAGE_SOURCE_ACCOUNT_NAME"]
    source_storage_container_name = os.environ[
        "AZURE_STORAGE_SOURCE_CONTAINER_NAME"]
    source_storage_key = os.environ["AZURE_STORAGE_SOURCE_KEY"]
    target_storage_endpoint = os.environ["AZURE_STORAGE_TARGET_ENDPOINT"]
    target_storage_account_name = os.environ[
        "AZURE_STORAGE_TARGET_ACCOUNT_NAME"]
    target_storage_container_name = os.environ[
        "AZURE_STORAGE_TARGET_CONTAINER_NAME"]
    target_storage_key = os.environ["AZURE_STORAGE_TARGET_KEY"]

    translation_client = DocumentTranslationClient(endpoint,
                                                   AzureKeyCredential(key))

    container_client = ContainerClient(
        source_storage_endpoint,
        container_name=source_storage_container_name,
        credential=source_storage_key)

    with open("document.txt", "rb") as doc:
        container_client.upload_blob("document.txt", doc)

    source_container_sas = generate_container_sas(
        account_name=source_storage_account_name,
        container_name=source_storage_container_name,
        account_key=source_storage_key,
        permission=ContainerSasPermissions.from_string("rl"))

    target_container_sas = generate_container_sas(
        account_name=target_storage_account_name,
        container_name=target_storage_container_name,
        account_key=target_storage_key,
        permission=ContainerSasPermissions.from_string("rlwd"))

    source_container_url = source_storage_endpoint + "/" + source_storage_container_name + "?" + source_container_sas
    target_container_url = target_storage_endpoint + "/" + target_storage_container_name + "?" + target_container_sas

    translation_inputs = [
        DocumentTranslationInput(source_url=source_container_url,
                                 targets=[
                                     TranslationTarget(
                                         target_url=target_container_url,
                                         language_code="es")
                                 ],
                                 prefix="document")
    ]

    job_detail = translation_client.create_translation_job(translation_inputs)
    job_result = translation_client.wait_until_done(job_detail.id)

    if job_result.status == "Succeeded":
        print("We translated our documents!")
        if job_result.documents_failed_count > 0:
            check_documents(translation_client, job_result.id)

    elif job_result.status in ["Failed", "ValidationFailed"]:
        if job_result.error:
            print("Translation job failed: {}: {}".format(
                job_result.error.code, job_result.error.message))
        check_documents(translation_client, job_result.id)
        exit(1)

    container_client = ContainerClient(
        target_storage_endpoint,
        container_name=target_storage_container_name,
        credential=target_storage_key)

    target_container_client = container_client.from_container_url(
        target_container_url)

    with open("translated.txt", "wb") as my_blob:
        download_stream = target_container_client.download_blob("document.txt")
        my_blob.write(download_stream.readall())
    async def batch_translation_with_storage_async(self):
        # import libraries
        from azure.core.credentials import AzureKeyCredential
        from azure.ai.documenttranslation.aio import DocumentTranslationClient
        from azure.ai.documenttranslation import (DocumentTranslationInput,
                                                  TranslationTarget)
        from azure.storage.blob.aio import ContainerClient
        from azure.storage.blob import (generate_container_sas,
                                        ContainerSasPermissions)

        # get service secrets
        endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
        key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
        source_storage_endpoint = os.environ["AZURE_STORAGE_SOURCE_ENDPOINT"]
        source_storage_account_name = os.environ[
            "AZURE_STORAGE_SOURCE_ACCOUNT_NAME"]
        source_storage_container_name = os.environ[
            "AZURE_STORAGE_SOURCE_CONTAINER_NAME"]
        source_storage_key = os.environ["AZURE_STORAGE_SOURCE_KEY"]
        target_storage_endpoint = os.environ["AZURE_STORAGE_TARGET_ENDPOINT"]
        target_storage_account_name = os.environ[
            "AZURE_STORAGE_TARGET_ACCOUNT_NAME"]
        target_storage_container_name = os.environ[
            "AZURE_STORAGE_TARGET_CONTAINER_NAME"]
        target_storage_key = os.environ["AZURE_STORAGE_TARGET_KEY"]

        # create service clients
        translation_client = DocumentTranslationClient(endpoint,
                                                       AzureKeyCredential(key))

        container_client = ContainerClient(
            source_storage_endpoint,
            container_name=source_storage_container_name,
            credential=source_storage_key)

        # upload some document for translation
        with open("document.txt", "rb") as doc:
            await container_client.upload_blob(name="document.txt", data=doc)

        # prepare translation job input
        source_container_sas = generate_container_sas(
            account_name=source_storage_account_name,
            container_name=source_storage_container_name,
            account_key=source_storage_key,
            permission=ContainerSasPermissions.from_string("rl"))

        target_container_sas = generate_container_sas(
            account_name=target_storage_account_name,
            container_name=target_storage_container_name,
            account_key=target_storage_key,
            permission=ContainerSasPermissions.from_string("rlwd"))

        source_container_url = source_storage_endpoint + "/" + source_storage_container_name + "?" + source_container_sas
        target_container_url = target_storage_endpoint + "/" + target_storage_container_name + "?" + target_container_sas

        translation_inputs = [
            DocumentTranslationInput(source_url=source_container_url,
                                     targets=[
                                         TranslationTarget(
                                             target_url=target_container_url,
                                             language_code="es")
                                     ],
                                     prefix="document")
        ]

        # run job
        async with translation_client:
            job_detail = await translation_client.create_translation_job(
                translation_inputs)
            job_result = await translation_client.wait_until_done(job_detail.id
                                                                  )

            # poll status result
            if job_result.status == "Succeeded":
                print("We translated our documents!")
                if job_result.documents_failed_count > 0:
                    await self.check_documents(translation_client,
                                               job_result.id)

            elif job_result.status in ["Failed", "ValidationFailed"]:
                if job_result.error:
                    print("Translation job failed: {}: {}".format(
                        job_result.error.code, job_result.error.message))
                await self.check_documents(translation_client, job_result.id)
                exit(1)

            # store result documents
            container_client = ContainerClient(
                target_storage_endpoint,
                container_name=target_storage_container_name,
                credential=target_storage_key)

            with open("translated.txt", "wb") as my_blob:
                download_stream = await container_client.download_blob(
                    "document.txt")
                my_blob.write(await download_stream.readall())