Exemple #1
0
def main(args):
    prediction_client = PredictionClient(args.address, args.port)
    if DEVICE_CONNECTION_STRING and not args.suppress_messages:
        iothub_client = IoTHubClient(DEVICE_CONNECTION_STRING, PROTOCOL)

    while True:
        for image in os.listdir(args.image_dir):
            # score image
            try:
                start_time = time.time()
                results = prediction_client.score_file(
                    path=os.path.join(args.image_dir, image),
                    input_name=args.input_tensors,
                    outputs=args.output_tensors)
                inference_time = (time.time() - start_time) * 1000
                result = 'cat' if results[0] > results[1] else 'dog'
                msg_string = "(%.3f ms) The image %s is a '%s'." % (
                    inference_time, image, result)
                print(msg_string)
            except:
                tb = traceback.format_exc()
                if "StatusCode.UNAVAILABLE" in tb:
                    msg_string = "Unable to inference because AzureML host container is not done flashing the FPGA. If still not available in 5 minutes, check logs of module."
                elif "Object reference not set to an instance of an object" in tb:
                    msg_string = "Unable to inference because the names of the input and output tensors used for scoring are incorrect.\n" + \
                                "Please update the docker CMD arguments to include the correct --input-tensors and --output-tensors parameters."
                else:
                    msg_string = "Unable to inference for unknown reason. See stack trace below:\n{}".format(
                        tb)
                print(msg_string)
                print("Trying again in {} seconds...".format(args.wait))

            if DEVICE_CONNECTION_STRING and not args.suppress_messages:
                send_iothub_message(iothub_client, msg_string)
            time.sleep(args.wait)
Exemple #2
0
def main(args):
    prediction_client = PredictionClient(args.address, args.port)
    if DEVICE_CONNECTION_STRING and not args.suppress_messages:
        iothub_client = IoTHubClient(DEVICE_CONNECTION_STRING, PROTOCOL)
    classes_entries = requests.get(
        "https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt"
    ).text.splitlines()

    while True:
        for image in os.listdir(args.image_dir):
            # score image
            try:
                start_time = time.time()
                results = prediction_client.score_file(
                    path=os.path.join(args.image_dir, image),
                    input_name=args.input_tensors,
                    outputs=args.output_tensors)
                inference_time = (time.time() - start_time) * 1000
                # map results [class_id] => [confidence]
                results = enumerate(results)
                # sort results by confidence
                sorted_results = sorted(results,
                                        key=lambda x: x[1],
                                        reverse=True)
                top_result = sorted_results[0]
                msg_string = "(%.0f ms) The image %s was classified as %s with confidence %s." % (
                    inference_time, os.path.join(args.image_dir, image),
                    classes_entries[top_result[0]], top_result[1])
                print(msg_string)
            except:
                tb = traceback.format_exc()
                if "StatusCode.UNAVAILABLE" in tb:
                    msg_string = "Unable to inference because AzureML host container is not done flashing the FPGA. If still not available in 5 minutes, check logs of module."
                elif "Object reference not set to an instance of an object" in tb:
                    msg_string = "Unable to inference because the names of the input and output tensors used for scoring are incorrect.\n" + \
                                "Please update the docker CMD arguments to include the correct --input-tensors and --output-tensors parameters."
                else:
                    msg_string = "Unable to inference for unknown reason. See stack trace below:\n{}".format(
                        tb)
                print(msg_string)
                print("Trying again in {} seconds...".format(args.wait))

            if DEVICE_CONNECTION_STRING and not args.suppress_messages:
                send_iothub_message(iothub_client, msg_string)
            time.sleep(args.wait)
Exemple #3
0
async def main():
    try:
        if not sys.version >= "3.5.3":
            raise Exception(
                "The sample requires python 3.5.3+. Current version of Python: %s"
                % sys.version)
        print("IoT Hub Client for Python")

        # The client object is used to interact with your Azure IoT hub.
        module_client = IoTHubModuleClient.create_from_edge_environment()

        # connect the client.
        await module_client.connect()

        prediction_client = PredictionClient(address='resnet50', port=50051)
        classes_entries = requests.get(
            "https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt"
        ).text.splitlines()

        image_dir = "./assets/"
        for image in os.listdir(image_dir):
            try:
                start_time = time.time()
                results = prediction_client.score_file(
                    path=os.path.join(image_dir, image),
                    input_name='Placeholder:0',
                    outputs='classifier/resnet_v1_50/predictions/Softmax:0')
                inference_time = (time.time() - start_time) * 1000
                # map results [class_id] => [confidence]
                results = enumerate(results)
                # sort results by confidence
                sorted_results = sorted(results,
                                        key=lambda x: x[1],
                                        reverse=True)
                top_result = sorted_results[0]
                msg_string = "(%.0f ms) The image %s was classified as %s with confidence %s." % (
                    inference_time, os.path.join(image_dir, image),
                    classes_entries[top_result[0]], top_result[1])
                print(msg_string)
            except:
                print('except')

        # define behavior for receiving an input message on input1
        async def input1_listener(module_client):
            while True:
                input_message = await module_client.receive_message_on_input(
                    "input1")  # blocking call
                print("the data in the message received on input1 was ")
                print(input_message.data)
                print("custom properties are")
                print(input_message.custom_properties)
                print("forwarding mesage to output1")
                await module_client.send_message_to_output(
                    input_message, "output1")

        # define behavior for halting the application
        def stdin_listener():
            while True:
                try:
                    selection = input("Press Q to quit\n")
                    if selection == "Q" or selection == "q":
                        print("Quitting...")
                        break
                except:
                    time.sleep(10)

        # Schedule task for C2D Listener
        listeners = asyncio.gather(input1_listener(module_client))

        print("The sample is now waiting for messages. ")

        # Run the stdin listener in the event loop
        loop = asyncio.get_event_loop()
        user_finished = loop.run_in_executor(None, stdin_listener)

        # Wait for user to indicate they are done listening for messages
        await user_finished

        # Cancel listening
        listeners.cancel()

        # Finally, disconnect
        await module_client.disconnect()

    except Exception as e:
        print("Unexpected error %s " % e)
        raise
async def processImages(module_client):
    global scoring
    global predictClient
    global fps

    async def scoreImage(module_client):
        global scoring
        global predictClient
        global fps
        currentFPS = fps.tick()[0]
        image = cv2.imread("image.jpg")
        result = predictClient.score_file(path="image.jpg",
                                          input_name=input_tensor,
                                          outputs=output_tensors)
        classes, scores, bboxes = ssdvgg_utils.postprocess(
            result, select_threshold=0.5)
        if bboxes.size > 0:
            message = {
                "classes": str(classes.tolist()).strip(
                    '[]'),  # because Azure IoT does not deal with list in JSON
                "scores": str(scores.tolist()).strip('[]'),
                "boxes": str(bboxes.tolist()).strip('[]'),
                "datetime": str(datetime.datetime.now()),
                "imageH": image.shape[0],
                "imageW": image.shape[1],
                "CameraURL": CameraURL,
                "scoredFPS": currentFPS
            }
            await sendmessage(module_client, message)
        scoring = False

    while True:
        try:
            global predictClient
            if FPGAinCloudAddress is not None and CameraURL is not None and FPGAinCloudaks_servicename is not None:
                predictClient = PredictionClient(
                    address=FPGAinCloudAddress,
                    port=FPGAinCloudPort,
                    use_ssl=FPGAinCloudssl_enabled,
                    service_name=FPGAinCloudaks_servicename)
                if "RTSP" in str(CameraURL).upper():
                    OpenCV = cv2.VideoCapture(CameraURL)
                    while True:
                        image = OpenCV.read()[1]
                        if scoring == False:
                            scoring = True
                            cv2.imwrite(image, "image.jpg")
                            scoreImage(module_client)
                        if PauseBetweenScoreSeconds > 0:
                            print("sleeping " + str(PauseBetweenScoreSeconds) +
                                  " seconds between scoring")
                            time.sleep(PauseBetweenScoreSeconds)
                elif "HTTP" in str(CameraURL).upper():
                    while True:
                        urllib.request.urlretrieve(url=CameraURL,
                                                   filename="image.jpg")
                        await scoreImage(module_client)
                        if PauseBetweenScoreSeconds > 0:
                            print("sleeping " + str(PauseBetweenScoreSeconds) +
                                  " seconds between scoring")
                            time.sleep(PauseBetweenScoreSeconds)
            else:
                print(
                    "FPGAinCloudAddress and/or CamaraURL and/or FPGAinCloudaks_servicename in TWINS are not set."
                )
                time.sleep(15)
        except Exception as e:
            print(e)
            print("sleeping for 15 seconds until retry")
            time.sleep(15)
Exemple #5
0
            self.respond(bytes(json.dumps(message), "utf8"))
        else:
            self.respond(bytes("{}", "utf8"))
        return

if __name__ == "__main__":
    FPGAinCloudAddress = "40.121.68.174"
    FPGAinCloudPort = 80
    FPGAinCloudssl_enabled = False
    FPGAinCloudaks_servicename = "fpga-aks-service"

    if 'FPGAinCloudAddress' in os.environ.keys():
        FPGAinCloudAddress = os.environ['FPGAinCloudAddress']
    if 'FPGAinCloudPort' in os.environ.keys():
        FPGAinCloudPort = os.environ['FPGAinCloudPort']
    if 'FPGAinCloudssl_enabled' in os.environ.keys():
        FPGAinCloudssl_enabled = util.strtobool(os.environ['FPGAinCloudssl_enabled'])
    if 'FPGAinCloudaks_servicename' in os.environ.keys():
        FPGAinCloudaks_servicename = os.environ['FPGAinCloudaks_servicename']

    print("Connecting to " + FPGAinCloudAddress + ":" + str(FPGAinCloudPort) + " ssl:" + str(FPGAinCloudssl_enabled) + " service:" + FPGAinCloudaks_servicename)

    # starting the PredictClient
    predictClient = PredictionClient(address=FPGAinCloudAddress, port=FPGAinCloudPort,
                    use_ssl=FPGAinCloudssl_enabled, service_name=FPGAinCloudaks_servicename)

    # starting the web server thread
    _thread.start_new_thread(webServer, (80, ))

    while True:
        time.sleep(60)  # allow the background thread to serve web request
Exemple #6
0
def processImages(module_client):
    global scoring
    global predictClient
    global fps

    def scoreImage(module_client):
        global scoring
        global predictClient
        global fps
        currentFPS = fps.tick()[0]
        image = cv2.imread("image.jpg")
        result = predictClient.score_file(path="image.jpg",
                                          input_name=input_tensor,
                                          outputs=output_tensors)
        classes, scores, bboxes = ssdvgg_utils.postprocess(
            result, select_threshold=0.5)
        if bboxes.size > 0:
            message = {
                "classes": classes,
                "scores": scores,
                "boxes": bboxes,
                "datetime": str(datetime.datetime.now()),
                "imageH": image.shape[0],
                "imageW": image.shape[1],
                "CameraURL": CameraURL,
                "scoredFPS": currentFPS
            }
            IoTHubMessage = IoTHubMessage(bytearray(json.dumps(message)))
            module_client.forward_event_to_output("output1", IoTHubMessage,
                                                  SEND_MESSAGECOUNTER)
        scoring = False

    while True:
        try:
            global predictClient
            if FPGAinCloudAddress is not None and CameraURL is not None and FPGAinCloudaks_servicename is not None:
                predictClient = PredictionClient(
                    address=FPGAinCloudAddress,
                    port=FPGAinCloudPort,
                    use_ssl=FPGAinCloudssl_enabled,
                    service_name=FPGAinCloudaks_servicename)
                if "RTSP" in str(CameraURL).upper():
                    OpenCV = cv2.VideoCapture(CameraURL)
                    while True:
                        image = OpenCV.read()[1]
                        if scoring == False:
                            scoring = True
                            cv2.imwrite(image, "image.jpg")
                            scoreImage(module_client)
                elif "HTTP" in str(CameraURL).upper():
                    while True:
                        urllib.request.urlretrieve(url=CameraURL,
                                                   filename="image.jpg")
                        scoreImage(module_client)
            else:
                print(
                    "FPGAinCloudAddress and/or CamaraURL and/or FPGAinCloudaks_servicename in TWINS are not set."
                )
        except Exception as e:
            print(e)
            print("sleeping for 15 seconds until retry")
            time.sleep(15)