def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(data=[['please add your text here.']],
                          columns=['text'])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the functions
    init()
    input1 = pandas.DataFrame(data=[[
        'The authors report on six cases of famotidine-associated delirium in hospitalized patients who cleared completely upon removal of famotidine.'
    ]],
                              columns=['text'])

    print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    #Generate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='service-schema.json')
    print("Schema generated")
Exemple #2
0
def main():
    # This is used to define the schema and example
    df = pandas.DataFrame(data=[["That was a good meal"],
                                ["What poor service"]],
                          columns=["Review"])
    print("Initializing")
    init()
    print("After Init")
    print(len(model))

    results = run(df)

    print(results)

    print(df)

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}
    # The prepare statement writes the scoring file (main.py) and
    # the scchema file (service_schema.json) the the output folder.
    #prepare(run_func=run, init_func=init, input_types=inputs, )
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='./outputs/service_schema.json')

    print("Schema generated")
Exemple #3
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(
        data=[[3.0, 3.6, 1.3, 0.25]],
        columns=['sepal length', 'sepal width', 'petal length', 'petal width'])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the functions
    init()
    input1 = pandas.DataFrame([[3.0, 3.6, 1.3, 0.25]])
    print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    #Genereate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='./outputs/service_schema.json')
    print("Schema generated")
Exemple #4
0
def main():
  from azureml.api.schema.dataTypes import DataTypes
  from azureml.api.schema.sampleDefinition import SampleDefinition
  from azureml.api.realtime.services import generate_schema
  import pandas as pd
  import json
  
  df = pd.DataFrame(data=[[31.6, 4.7, 20.8, 77.7]], columns=['drone_batteryVoltage', \
   'drone_responseTime', 'ambient_temperature', 'ambient_humidity'])

  # Turn on data collection debug mode to view output in stdout
  os.environ["AML_MODEL_DC_DEBUG"] = 'true'

  # Test the output of the functions
  init()
  
  input1 = '{ "drone": { "batteryVoltage": 31.6, "responseTime": 4.7 }, \
        "ambient": { "temperature": 20.8, "humidity": 77.7 },\
        "timeCreated": "2017-12-27T16:02:09.1933728Z" }'

  print("Result: " + run(input1))
  
  inputs = {"input_str": SampleDefinition(DataTypes.PANDAS, df)}
  
  # Genereate the schema
  generate_schema(run_func=run, inputs=inputs, filepath='./outputs/service_schema.json')
  print("Schema generated")
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(data=[['text-value']], columns=['text'])
    text_data = {}
    text_data['text'] = []
    text_data['text'].append(
        str('Famotidine is a histamine H2-receptor antagonist used in inpatient settings for prevention of stress ulcers.'
            ))
    text_data['text'].append(str('Insulin is used to treat diabetes.'))

    input1 = pandas.DataFrame.from_dict(text_data)

    # Test the functions' output
    init()
    print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}
    # The prepare statement writes the scoring file (main.py) and
    # the schema file (service_schema.json) the the output folder.
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='service_schema.json')
    print("Schema generated")
Exemple #6
0
def main():
    """WebService unit test and swagger schema generation
    """
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    from PIL import Image
    import json, os

    # Save labels
    generate_labels("data/train", "labels.json")
    print("Labels generated")

    # Create random image
    pilImg = Image.fromarray(
        (numpy.random.rand(224, 224, 3) * 255).astype('uint8'))
    base64ImgString = pilImgToBase64(pilImg)

    df = {'base64image': base64ImgString}

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the classification
    init()
    run(df)

    inputs = {"input_df": SampleDefinition(DataTypes.STANDARD, df)}

    #Genereate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='./outputs/service_schema.json')
    print("Schema generated")
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    # Anomaly
    df = pandas.DataFrame(data=[[33.66995566, 2.44341267, 21.39450979, 26]], columns=['machine_temperature', \
      'machine_pressure','ambient_temperature','ambient_humidity'])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the functions
    init()
    # Anomaly
    #input1 = '{ "machine": { "temperature": 33.66995566, "pressure": 2.44341267 }, \
    #      "ambient": { "temperature": 21.39450979, "humidity": 26 },\
    #      "timeCreated": "2017-10-27T18:14:02.4911177Z" }'

    # Normal
    input1 = '{ "machine": { "temperature": 31.16469009, "pressure": 2.158002669 }, \
     "ambient": { "temperature": 21.17794693, "humidity": 25 },\
      "timeCreated": "2017-10-27T18:14:02.4911177Z" }'

    print("Result-ilyas: " + str(run(input1)))

    inputs = {"input_json": SampleDefinition(DataTypes.STANDARD, input1)}

    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='./outputs/service_schema.json')

    print("Schema generated")
Exemple #8
0
def main():
  from azureml.api.schema.dataTypes import DataTypes
  from azureml.api.schema.sampleDefinition import SampleDefinition
  from azureml.api.realtime.services import generate_schema
  import pandas
  
  # temp=45.9842594460449, volt=150.513223075022, rotate=277.294013981084, state=0.0, time=1.0, id=1.0
  df = pandas.DataFrame(data=[[45.9842594460449, 150.513223075022, 277.294013981084, 1.0, 1.0], [46.9842594460449, 152.513223075022, 277.294013981084, 2.0, 1.0]], columns=['temp', 'volt','rotate','time', 'id'])

  print(df.dtypes)

  # Turn on data collection debug mode to view output in stdout
  os.environ["AML_MODEL_DC_DEBUG"] = 'true'

  # Test the output of the functions
  init()
  
  print("past init building inputs?")

  inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

  print("calling run?")
  res = run(df)
  print(res)

  #Genereate the schema
  generate_schema(run_func=run, inputs=inputs, filepath='./outputs/service_schema.json')
  print("Schema generated")
  upload_schema('./outputs/service_schema.json')
  print("Schema uploaded")
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    # Create random 5x5 pixels image to use as sample input
    #base64ImgString = "iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAIAAAACDbGyAAAAFElEQVR4nGP8//8/AxJgYkAFpPIB6vYDBxf2tWQAAAAASUVORK5CYII="
    #pilImg = pilImread("C:/Users/pabuehle/Desktop/vienna/iris4/tiny.jpg")
    pilImg = Image.fromarray(
        (np.random.rand(5, 5, 3) * 255).astype('uint8'))  #.convert('RGB')
    base64ImgString = pilImgToBase64(pilImg)  #random 5x5 pixels image

    # Call init() and run() function
    init()
    df = pandas.DataFrame(data=[[base64ImgString]],
                          columns=['image base64 string'])
    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}
    resultString = run(df)
    print("resultString = " + str(resultString))

    # Genereate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='service_schema.json')
    print("Schema generated.")
Exemple #10
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas as pd

    # create the outputs folder
    os.makedirs('./outputs', exist_ok=True)

    df1 = pd.DataFrame(data=[[
        "I absolutely love my bank. There's a reason this bank's customer base is so strong--their customer service actually acts like people and not robots. I love that anytime my card is swiped, I'm instantly notified. And the built in budgeting app is something that really makes life easier. The biggest setback is not being able to deposit cash (you have to get a money order), and if you have another, non-simple bank account, transferring money between accounts can take a few days, which frankly isn't acceptable with most ACH taking a business day or less. Overall, it's a great bank, and I would recommend it to anyone."
    ]],
                       columns=['review'])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the functions
    init()
    input1 = pd.DataFrame(data=[[
        "I absolutely love my bank. There's a reason this bank's customer base is so strong--their customer service actually acts like people and not robots. I love that anytime my card is swiped, I'm instantly notified. And the built in budgeting app is something that really  makes life easier. The biggest setback is not being able to deposit cash (you have to get a money order), and if you have another, non-simple bank account, transferring money between accounts can take a few days, which frankly isn't acceptable with most ACH taking a business day or less. Overall, it's a great bank, and I would recommend it to anyone."
    ]],
                          columns=['review'])

    print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df1)}

    #Genereate the schema
    #generate_schema(run_func=run, inputs=inputs, filepath='./outputs/senti_schema2.json')
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='senti_service_schema.json')
    print("Schema generated")
Exemple #11
0
def main():
  from azureml.api.schema.dataTypes import DataTypes
  from azureml.api.schema.sampleDefinition import SampleDefinition
  from azureml.api.realtime.services import generate_schema
  import pandas
  
  # create the outputs folder
  os.makedirs('./outputs', exist_ok=True)

  df = pandas.DataFrame(data=[['i loved the new movie and enjoyed the great acting']], columns=['reviewText'])

  # Turn on data collection debug mode to view output in stdout
  os.environ["AML_MODEL_DC_DEBUG"] = 'true'

  # Test the output of the functions
  init()
  input1 = pandas.DataFrame(data=[['i loved the new movie and enjoyed the great acting']], columns=['reviewText'])

  print("Result: " + run(input1))
  
  inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}
  
  #Genereate the schema
  generate_schema(run_func=run, inputs=inputs, filepath='myschema.json')
  print("Schema generated")
Exemple #12
0
def main(protocol):

    try:
        print("\nPython %s\n" % sys.version)
        print("IoT Hub Client for Python")
        hub_manager = HubManager(protocol)
        print("Starting the IoT Hub Python sample using protocol %s..." %
              hub_manager.client_protocol)
        print(
            "The sample is now waiting for messages and will indefinitely.  Press Ctrl-C to exit. "
        )

        while True:
            time.sleep(1)
    except IoTHubError as iothub_error:
        print("Unexpected error %s from IoTHub" % iothub_error)
        return
    except KeyboardInterrupt:
        print("IoTHubModuleClient sample stopped")

    # Anomaly
    df = pandas.DataFrame(data=[[33.66995566, 2.44341267, 21.39450979, 26]],
                          columns=[
                              'machine_temperature', 'machine_pressure',
                              'ambient_temperature', 'ambient_humidity'
                          ])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'false'

    # Test the output of the functions
    init()

    # Anomaly
    input1 = '{ "machine": { "temperature": 33.66995566, "pressure": 2.44341267 }, \
        "ambient": { "temperature": 21.39450979, "humidity": 26 },\
        "timeCreated": "2017-10-27T18:14:02.4911177Z" }'

    # Normal
    # input1 = '{ "machine": { "temperature": 31.16469009, "pressure": 2.158002669 }, \
    #      "ambient": { "temperature": 21.17794693, "humidity": 25 },\
    #     "timeCreated": "2017-10-27T18:14:02.4911177Z" }'

    #print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}
    generate_schema(run_func=run,
                    inputs=input1,
                    filepath='./outputs/service_schema.json')
Exemple #13
0
def main():
    # Load the Azure ML libraries to generate a schema
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    
    # Test the init and run functions using test data
    test_doc_text = "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACAAIADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iiigAooooA5vVdW8Rl5ItE0FZNrFfPvJljU+6qDkj34rkNab4nW9q8haJweANOUOw/AjP8AOvU6KAPEvDGo+NdZ1i5sLvULiKQORGJZCm3HXIHPTHHWtnUtS8Q6BfyWt1qjSsqCRXicsGU54IbODx/KpPEt0X8cTXWly+VJZQqtxMBkGQZwPchSAfy7Vc0vwk/iEyajq13cgySZ/dttMmOxPYcYwMdKYGL4d+LU8gM2rxhbJbhYGlYYZd2fm4AzjHIx0+leuo6yIHRgysMgg5BFeRePfhYX0/7doUtxI9upZ7SWUvuUDkpnnd1479BVb4V/EAWyx+HNZlKKp2Wk0nG3/pm2ent+XpQB7PRRRSAKKKKACiiigAooooAKKKKACsXxZr8Xhrw1eanIRujXbEp/ikbhR+Z/StqvIPixrC3HiPS9EBDQWaG/uF7Fvuxqf1P40IDM0K2uNQ12zsBLIXVPtFyCfvSyHjf6nktjtXt1vAltbxwxjCRqFUewrzP4UWkl0+oaxcKS0knyse5I/oMfnXqFNgFcJ42+Glh4nL31oVtNVPJl52y4GAHH9QM/Wu7opAeR+H/G2seDLqPQvGltMtuvywXxG7A7ZI++vv8AeHcV6vbXUF7bR3FtNHNDINySRsGVh7EVFf6dZ6paPa31tFcQOMMki5H/ANY+9clp3gu78K65Dc+Hr2U6XNLi706d8qqn+NCe4647jvQB29FFFABRRRQAUUUUAFFFFABXzPrWoHXPF3iG/DZWa8FtEfRE+UfzzX0TrV+ml6HfX8jbVt4Hkzj0Bx+tfMPhVWuIbRSMvPfNuJ9eaaA+j/B2mrpfhayhCgM6ea31bn+WB+Fb1NjRYo1jUYVQFH0FOpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHisE+ENaA6/YZv8A0A185eAYwRozn/oJun5BT/WvprU7f7XpV5bf89oHj/NSK+YfB2osLHSYXzm31hsjPTdGP6qaaA+qKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXyjNbto3ifxBpwCgWerrMOTnaXKjAx0w4/Ovq6vnT4oac1h8SNYdFhRdS01Jw8suwBlIBx6nKChAfQdhN9o062mznzIlb8wKsVzfg7VYLjwRY30kypEkPzu5ACgdye3FdGrB1DKQVIyCO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4j+0NpO+z0XWFTmKR7dz7MAy/qp/Ovbq4b4vacNR+G+pcZa22XKj/AHWGf0JoA8h+H/h/XvG6Q2MmoPFoFq6vNF5uA2OMBB1J29TwK+llUKoUDAAwBXgvwKv1t9cvNPYjE0RZOOc9ev4Gve6bAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFUdasRqeh39gQCLm3ki/wC+lIq9RQB8m+BtVfQfGGm3chKhJBHL9M4b+tfWIIIyDkV8q+ONKOi+OdWtVXai3Jmj/wByT5x/MivoT4f66uv+D7K4LgzRL5Mv+8vf8Rg1T7gdPRXP+ENWuNV0y7F2/mXNpfXFrI+AM7HO3p/skV0FSAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4z8bvDkrz6frtrEXLD7HOFHOScxn88j8q4rRdY8W+Cnm0+1hntZ503eTNb5Lc4BUN1OTjjPWvpDUrCPU9Oms5eFkXAP90jkH8CAfwrP0vTZ57v+1dWjiN8E8qJQgxCoJyVJ7t1J+lO/QDP+Hvhy78N+GBDqMxl1C6ma6umJziR+oz39/fNdXRRSAKKKKACiiigAooooA//2Q=="
    init()
    category = run(test_doc_text)
    print(category)

    # Generate the schema file (schema.json)
    inputs = {"doc_base64": SampleDefinition(DataTypes.STANDARD, test_doc_text)}
    generate_schema(run_func=run, inputs=inputs, filepath='./outputs/schema.json')
def main():
    # Load the Azure ML libraries to generate a schema
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema

    # Test the init and run functions using test data
    test_doc_text = "OpenGL on the GPU is fast"
    init()
    category = run(test_doc_text)
    print(category)

    # Generate the schema file (schema.json)
    inputs = {"doc_text": SampleDefinition(DataTypes.STANDARD, test_doc_text)}
    generate_schema(run_func=run, inputs=inputs, filepath='schema.json')
def generate_api_schema():
    import os
    print("create schema")
    df = pd.read_csv("sample.csv")
    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}
    os.makedirs('outputs', exist_ok=True)
    print(generate_schema(inputs=inputs, filepath="outputs/schema.json", run_func=run))
Exemple #16
0
def generate_api_schema():
    import os
    print("create schema")
    sample_input = "byestring_representing_image"
    inputs = {"input_bytes": SampleDefinition(DataTypes.STANDARD, sample_input)}
    os.makedirs('outputs', exist_ok=True)
    print(generate_schema(inputs=inputs, filepath=os.path.join("outputs","schema.json"), run_func=run))
Exemple #17
0
def generate_api_schema():
    import os
    print("create schema")
    sample_input = "sample data text"
    inputs = {"text": SampleDefinition(DataTypes.STANDARD, sample_input)}
    os.makedirs('outputs', exist_ok=True)
    print(generate_schema(inputs=inputs, filepath="outputs/schema.json", run_func=run))
Exemple #18
0
def createwebserviceschema():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema

    inputs = {"inputData": SampleDefinition(DataTypes.NUMPY, X_test)}
    print(generate_schema(run_func=run, inputs=inputs, filepath="./outputs/schema.json"))
def main():
    from tatk.pipelines.text_classification.text_classifier import TextClassifier
    from sklearn.linear_model import LogisticRegression
    import pandas

    init()
    df = pandas.DataFrame(data=[['please add your good text here.']],
                          columns=['tweets'])
    #input1 = pandas.DataFrame(data=[['please add your good text here.']], columns=['tweets'])
    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    #Generate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='service-schema.json')
    print("Schema generated")
Exemple #20
0
def main():
    # Generating random 28x28 pixels to use as sample input
    sample_input = (np.random.rand(28, 28, 1) * 255)  #.astype('uint8')
    sample_input = sample_input.reshape(1, 28, 28,
                                        1)  # Reshaping to match training data

    # Calling init() and run()
    init()
    inputs = {"input_array": SampleDefinition(DataTypes.NUMPY, sample_input)}
    result_string = run(sample_input)
    print("resultString = " + str(result_string))

    # Generating the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='outputs/schema.json')
    print('Schema generated')
Exemple #21
0
def main():
    # Test the init and run functions using test data
    init()

    test_doc_text = "🍪"
    category = run(test_doc_text)
    print(category)

    test_doc_text = "tomato pizza"

    # Generate the schema file (schema.json) needed for AML operationalization
    inputs = {"doc_text": SampleDefinition(DataTypes.STANDARD, test_doc_text)}
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='./outputs/schema.json')
    block_blob_service.create_blob_from_path('embeddings', 'schema.json',
                                             './outputs/schema.json')
def main():
  from azureml.api.schema.dataTypes import DataTypes
  from azureml.api.schema.sampleDefinition import SampleDefinition
  from azureml.api.realtime.services import generate_schema
  import pandas

  df = pandas.DataFrame(data=[[380, 120, 76]], columns=['indicator1', 'NF1', 'cellprofiling'])

  # Check the output of the function
  init()
  input1 = pandas.DataFrame([[380, 120, 76]])
  print("Result: " + run(input1))
  
  inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

  # Generate the service_schema.json
  generate_schema(run_func=run, inputs=inputs, filepath='output/service_schema.json')
  print("Schema generated")
Exemple #23
0
def main():
  from azureml.api.schema.dataTypes import DataTypes
  from azureml.api.schema.sampleDefinition import SampleDefinition
  from azureml.api.realtime.services import generate_schema
  import pandas

  df = pandas.DataFrame(data=[[190, 60, 38]], columns=['height', 'width', 'shoe_size'])

  # Test the functions' output
  init()
  input1 = pandas.DataFrame([[190, 60, 38]])
  print("Result: " + run(input1))
  
  inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

  # Generate the service_schema.json
  generate_schema(run_func=run, inputs=inputs, filepath='service_schema.json')
  print("Schema generated")
Exemple #24
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema

    sentences = ['This is a sentence.', 'This is another one.']

    # Test the output of the functions
    init()
    result = run(sentences)

    inputs = {"sentences": SampleDefinition(DataTypes.STANDARD, sentences)}

    #Generate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='infersent_service_schema.json')
    print("Schema generated")
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    inputs = {
        "input_df": SampleDefinition(DataTypes.PANDAS, yourinputdataframe)
    }
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='service_schema.json')
    print("Schema generated")

    if __name__ == "__main__":
        main()
Exemple #26
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import numpy as np

    text_entry = 'This is a sentence. This is an awesome sentence!'

    # Test the output of the functions
    init()
    print("Result: " + run(text_entry))

    inputs = {"text_entry": SampleDefinition(DataTypes.STANDARD, text_entry)}

    #Generate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='./outputs/cnn_service_schema.json')
    print("Schema generated")
Exemple #27
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(data=["What a waste of time and money! The story was not realistic at all! Actually it was completely far fetched!"], columns=['Text'])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the functions
    init()
    input1 = pandas.DataFrame(data=["What a waste of time and money! The story was not realistic at all! Actually it was completely far fetched!"], columns=['Text'])
    print("The input {0} created the following output: {1}".format(input1['Text'], run(input1)))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    #Genereate the schema
    generate_schema(run_func=run, inputs=inputs, filepath='./outputs/service_schema.json')
    print("Schema generated")
Exemple #28
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(data=[[1,1,1,1,1,1,1,1,1,1]], columns=['MAX_ACCX', 'MAX_ACCY', 'MAX_ACCZ', 'MAX_GYROX', 'MAX_GYROY', 'MAX_GYROZ', 'ACC_AVG', 'ACC_VAR', 'GYRO_AVG', 'GYRO_VAR'])

    # Turn on data collection debug mode to view output in stdout
    os.environ["AML_MODEL_DC_DEBUG"] = 'true'

    # Test the output of the functions
    init()
    input1 = pandas.DataFrame([[1,1,1,1,1,1,1,1,1,1]])
    print("The input {0} created the following output: {1}".format(input1.values, run(input1)))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    #Genereate the schema
    generate_schema(run_func=run, inputs=inputs, filepath='./outputs/service_schema.json')
    print("Schema generated")
def generate_api_schema():
    inputs = {"input_array": SampleDefinition(DataTypes.STANDARD, "dGVzdA==")}
    outputs = {"coordinates": SampleDefinition(DataTypes.STANDARD, [1, 2, 4, 5, 8, 9, 5, 6])}
    print(generate_schema(inputs=inputs, filepath="schema.json", run_func=run, outputs=outputs))

# generate_api_schema()

# import base64

# init()
# with open("E:\\Repos\\esk-form-scanner-model\\src\\data\\validation\\i0.jpg", "rb") as file:
#     print(base64.b64encode(file.read(-1)))
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(data=[[380, 120, 76]],
                          columns=['indicator1', 'NF1', 'cellprofiling'])

    # Check the output of the function
    init()
    input1 = pandas.DataFrame([[380, 120, 76]])
    print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    # Generate the service_schema.json
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='output/service_schema.json')
    print("Schema generated")
Exemple #31
0
def main():
    from azureml.api.schema.dataTypes import DataTypes
    from azureml.api.schema.sampleDefinition import SampleDefinition
    from azureml.api.realtime.services import generate_schema
    import pandas

    df = pandas.DataFrame(
        data=[[3.0, 3.6, 1.3, 0.25]],
        columns=['sepal length', 'sepal width', 'petal length', 'petal width'])

    # Test the output of the functions
    init()
    input1 = pandas.DataFrame([[3.0, 3.6, 1.3, 0.25]])
    print("Result: " + run(input1))

    inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, df)}

    #Genereate the schema
    generate_schema(run_func=run,
                    inputs=inputs,
                    filepath='service_schema.json')
    print("Schema generated")
Exemple #32
0
#========================= CREATE WEB SERVICE SCHEMA =========================
def run(inputData):
    import json
        
    prediction = classifier.predict(input_df)

    prediction = "%s %d" % (str(input_df), classifier)
    return json.dumps(str(prediction))

from azureml.api.schema.dataTypes import DataTypes
from azureml.api.schema.sampleDefinition import SampleDefinition
from azureml.api.realtime.services import generate_schema

inputs = {"inputData": SampleDefinition(DataTypes.NUMPY, X_test)}
print(generate_schema(run_func=run, inputs=inputs, filepath="./outputs/schema.json"))

'''
#========================= VISUALISING THE RESULTS =========================
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

# Visualising the Training set results
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())