def __initialize_explainer(self, automl_explainer_setup_obj): return MimicWrapper( self.__ws, automl_explainer_setup_obj.automl_estimator, explainable_model=automl_explainer_setup_obj.surrogate_model, init_dataset=automl_explainer_setup_obj.X_transform, run=self.__run, features=automl_explainer_setup_obj.engineered_feature_names, feature_maps=[automl_explainer_setup_obj.feature_map], classes=automl_explainer_setup_obj.classes, explainer_kwargs=automl_explainer_setup_obj.surrogate_model_params)
# Drop the lablled column to get the testing set. X_test = test_dataset.drop_columns(columns=['<<target_column_name>>']) # Setup the class for explaining the AtuoML models automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>', X=X_train, X_test=X_test, y=y_train) # Initialize the Mimic Explainer explainer = MimicWrapper( ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel, init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run, features=automl_explainer_setup_obj.engineered_feature_names, feature_maps=[automl_explainer_setup_obj.feature_map], classes=automl_explainer_setup_obj.classes) # Compute the engineered explanations engineered_explanations = explainer.explain( ['local', 'global'], tag='engineered explanations', eval_dataset=automl_explainer_setup_obj.X_test_transform) # Compute the raw explanations raw_explanations = explainer.explain( ['local', 'global'], get_raw=True,