Exemple #1
0
def im_detect(predictor, data_batch, data_names, scales, cfg):
    output_all = predictor.predict(data_batch)

    data_dict_all = [
        dict(zip(data_names, data_batch.data[i]))
        for i in range(len(data_batch.data))
    ]
    scores_all = []
    pred_boxes_all = []
    for output, data_dict, scale in zip(output_all, data_dict_all, scales):
        if cfg.TEST.HAS_RPN:
            rois = output['rois_output'].asnumpy()[:, 1:]
        else:
            rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:]
        im_shape = data_dict['data'].shape

        # save output
        scores = output['cls_prob_reshape_output'].asnumpy()[0]
        bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]

        # post processing
        pred_boxes = bbox_pred(rois, bbox_deltas)
        pred_boxes = clip_boxes(pred_boxes, im_shape[-2:])

        # we used scaled image & roi to train, so it is necessary to transform them back
        pred_boxes = pred_boxes / scale

        scores_all.append(scores)
        pred_boxes_all.append(pred_boxes)

    if 'feat_conv_3x3_relu_output' in output_all[0]:
        feat = output_all[0]['feat_conv_3x3_relu_output']
    else:
        feat = None
    return scores_all, pred_boxes_all, data_dict_all, feat
Exemple #2
0
def im_batch_detect(predictor, data_batch, data_names, scales, cfg):
    output_all = predictor.predict(data_batch)

    data_dict_all = [
        dict(zip(data_names, data_batch.data[i]))
        for i in range(len(data_batch.data))
    ]
    scores_all = []
    pred_boxes_all = []
    for output, data_dict, scale in zip(output_all, data_dict_all, scales):
        im_infos = data_dict['im_info'].asnumpy()
        # save output
        scores = output['cls_prob_reshape_output'].asnumpy()[0]
        bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
        rois = output['rois_output'].asnumpy()
        for im_idx in range(im_infos.shape[0]):
            bb_idxs = np.where(rois[:, 0] == im_idx)[0]
            im_shape = im_infos[im_idx, :2].astype(np.int)

            # post processing
            pred_boxes = bbox_pred(rois[bb_idxs, 1:], bbox_deltas[bb_idxs, :])
            pred_boxes = clip_boxes(pred_boxes, im_shape)

            # we used scaled image & roi to train, so it is necessary to transform them back
            pred_boxes = pred_boxes / scale[im_idx]

            scores_all.append(scores[bb_idxs, :])
            pred_boxes_all.append(pred_boxes)

    return scores_all, pred_boxes_all, data_dict_all
    def forward(self, is_train, req, in_data, out_data, aux):
        nms = gpu_nms_wrapper(self._threshold, in_data[0].context.device_id)

        batch_size = in_data[0].shape[0]
        if batch_size > 1:
            raise ValueError(
                "Sorry, multiple images each device is not implemented")

        # for each (H, W) location i
        #   generate A anchor boxes centered on cell i
        #   apply predicted bbox deltas at cell i to each of the A anchors
        # clip predicted boxes to image
        # remove predicted boxes with either height or width < threshold
        # sort all (proposal, score) pairs by score from highest to lowest
        # take top pre_nms_topN proposals before NMS
        # apply NMS with threshold 0.7 to remaining proposals
        # take after_nms_topN proposals after NMS
        # return the top proposals (-> RoIs top, scores top)

        pre_nms_topN = self._rpn_pre_nms_top_n
        post_nms_topN = self._rpn_post_nms_top_n
        min_size = self._rpn_min_size

        # the first set of anchors are background probabilities
        # keep the second part
        scores = in_data[0].asnumpy()[:, self._num_anchors:, :, :]
        bbox_deltas = in_data[1].asnumpy()
        im_info = in_data[2].asnumpy()[0, :]

        if DEBUG:
            print('im_size: ({}, {})'.format(im_info[0], im_info[1]))
            print('scale: {}'.format(im_info[2]))

        # 1. Generate proposals from bbox_deltas and shifted anchors
        # use real image size instead of padded feature map sizes
        height, width = int(im_info[0] / self._feat_stride), int(
            im_info[1] / self._feat_stride)

        if DEBUG:
            print('score map size: {}'.format(scores.shape))
            print("resudial: {}".format(
                (scores.shape[2] - height, scores.shape[3] - width)))

        # Enumerate all shifts
        shift_x = np.arange(0, width) * self._feat_stride
        shift_y = np.arange(0, height) * self._feat_stride
        shift_x, shift_y = np.meshgrid(shift_x, shift_y)
        shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                            shift_y.ravel())).transpose()

        # Enumerate all shifted anchors:
        #
        # add A anchors (1, A, 4) to
        # cell K shifts (K, 1, 4) to get
        # shift anchors (K, A, 4)
        # reshape to (K*A, 4) shifted anchors
        A = self._num_anchors
        K = shifts.shape[0]
        anchors = self._anchors.reshape((1, A, 4)) + shifts.reshape(
            (1, K, 4)).transpose((1, 0, 2))
        anchors = anchors.reshape((K * A, 4))

        # Transpose and reshape predicted bbox transformations to get them
        # into the same order as the anchors:
        #
        # bbox deltas will be (1, 4 * A, H, W) format
        # transpose to (1, H, W, 4 * A)
        # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)
        # in slowest to fastest order
        bbox_deltas = self._clip_pad(bbox_deltas, (height, width))
        bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))

        # Same story for the scores:
        #
        # scores are (1, A, H, W) format
        # transpose to (1, H, W, A)
        # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a)
        scores = self._clip_pad(scores, (height, width))
        scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1))

        # Convert anchors into proposals via bbox transformations
        proposals = bbox_pred(anchors, bbox_deltas)

        # 2. clip predicted boxes to image
        proposals = clip_boxes(proposals, im_info[:2])

        # 3. remove predicted boxes with either height or width < threshold
        # (NOTE: convert min_size to input image scale stored in im_info[2])
        keep = self._filter_boxes(proposals, min_size * im_info[2])
        proposals = proposals[keep, :]
        scores = scores[keep]

        # 4. sort all (proposal, score) pairs by score from highest to lowest
        # 5. take top pre_nms_topN (e.g. 6000)
        order = scores.ravel().argsort()[::-1]
        if pre_nms_topN > 0:
            order = order[:pre_nms_topN]
        proposals = proposals[order, :]
        scores = scores[order]

        # 6. apply nms (e.g. threshold = 0.7)
        # 7. take after_nms_topN (e.g. 300)
        # 8. return the top proposals (-> RoIs top)
        det = np.hstack((proposals, scores)).astype(np.float32)
        keep = nms(det)
        if post_nms_topN > 0:
            keep = keep[:post_nms_topN]
        # pad to ensure output size remains unchanged
        if len(keep) < post_nms_topN:
            pad = npr.choice(keep, size=post_nms_topN - len(keep))
            keep = np.hstack((keep, pad))
        proposals = proposals[keep, :]
        scores = scores[keep]

        # Output rois array
        # Our RPN implementation only supports a single input image, so all
        # batch inds are 0
        batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
        blob = np.hstack((batch_inds, proposals.astype(np.float32,
                                                       copy=False)))
        self.assign(out_data[0], req[0], blob)

        if self._output_score:
            self.assign(out_data[1], req[1],
                        scores.astype(np.float32, copy=False))