Exemple #1
0
def create_test_data_cycle(
) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]:
    flow_graph = FlowGraph()

    flow_graph.add_edge('A', 'B', 2.0, 0.5)
    flow_graph.add_edge('B', 'C', 0.7, 0.1)

    comp_graph = ComputationGraph()

    comp_graph.add_edge('A', 'B', 2.0, 0.5)
    comp_graph.add_edge('B', 'C', 0.7, 0.1)

    comp_graph.graph.nodes['A']['split'] = [False, False]
    comp_graph.graph.nodes['B']['split'] = [False, False]
    comp_graph.graph.nodes['C']['split'] = [False, False]

    subtest_cases: List[SubTestCase] = []

    # Case 0
    params = {'B': 5, 'C': 10}
    conflicts = {'B': {'C'}, 'C': {'B'}}
    combinations = {frozenset({'B'}), frozenset({'C'})}
    results = {('A', frozenset({'B'})): 2.5, ('A', frozenset({'C'})): 0.5}
    subtest_cases.append(SubTestCase(params, conflicts, combinations, results))

    return flow_graph, comp_graph, subtest_cases
Exemple #2
0
def create_test_data_flow(
) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]:
    flow_graph = FlowGraph()

    flow_graph.add_edge('D', 'A', 1.0, None)
    flow_graph.add_edge('E', 'A', 1.0, None)
    flow_graph.add_edge('A', 'B', 2.0, None)
    flow_graph.add_edge('B', 'C', 0.7, 0.1)
    flow_graph.add_edge('F', 'C', 1.0, None)
    flow_graph.add_edge('C', 'G', None, None)
    flow_graph.add_edge('H', 'G', 0.5, 0.9)
    flow_graph.add_edge('I', 'G', 0.4, 0.1)

    comp_graph = ComputationGraph()

    comp_graph.add_edge('D', 'A', 1.0, None)
    comp_graph.add_edge('E', 'A', 1.0, None)
    comp_graph.add_edge('A', 'B', 2.0, 0.5)
    comp_graph.add_edge('B', 'C', 0.7, 0.1)
    comp_graph.add_edge('F', 'C', 1.0, 0.9)
    comp_graph.add_edge('C', 'G', 1.0, 0.0)
    comp_graph.add_edge('H', 'G', 0.5, 0.9)
    comp_graph.add_edge('I', 'G', 0.4, 0.1)

    comp_graph.graph.nodes['A']['split'] = [False, False]
    comp_graph.graph.nodes['B']['split'] = [False, False]
    comp_graph.graph.nodes['C']['split'] = [False, True]
    comp_graph.graph.nodes['D']['split'] = [False, False]
    comp_graph.graph.nodes['E']['split'] = [False, False]
    comp_graph.graph.nodes['F']['split'] = [False, False]
    comp_graph.graph.nodes['G']['split'] = [False, True]
    comp_graph.graph.nodes['H']['split'] = [False, False]
    comp_graph.graph.nodes['I']['split'] = [False, False]

    return flow_graph, comp_graph, []
Exemple #3
0
    def _create_computation_graph(self) -> ComputationGraph:
        """ Create a Computation Graph based on the Flow Graph """
        graph = ComputationGraph()
        for u, v, weight, reverse_weight in self.edges():
            graph.add_edge(u, v, weight, reverse_weight)

        for n, split in self._direct_graph.nodes.data('split'):
            graph.mark_node_split(n, split, EdgeType.DIRECT)

        for n, split in self._reverse_graph.nodes.data('split'):
            graph.mark_node_split(n, split, EdgeType.REVERSE)

        return graph
Exemple #4
0
def create_test_data_star2(
) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]:
    flow_graph = FlowGraph()

    flow_graph.add_edge('A', 'B', None, None)
    flow_graph.add_edge('A', 'C', None, None)
    flow_graph.add_edge('A', 'D', None, None)
    flow_graph.add_edge('A', 'E', None, None)

    comp_graph = ComputationGraph()

    comp_graph.add_edge('A', 'B', None, 1.0)
    comp_graph.add_edge('A', 'C', None, 1.0)
    comp_graph.add_edge('A', 'D', None, 1.0)
    comp_graph.add_edge('A', 'E', None, 1.0)

    comp_graph.graph.nodes['A']['split'] = [False, False]
    comp_graph.graph.nodes['B']['split'] = [False, False]
    comp_graph.graph.nodes['C']['split'] = [False, False]
    comp_graph.graph.nodes['D']['split'] = [False, False]
    comp_graph.graph.nodes['E']['split'] = [False, False]

    subtest_cases: List[SubTestCase] = []

    # Case 0
    params = {'B': 5, 'C': 10, 'D': 8, 'E': 12}
    conflicts = {'B': set(), 'C': set(), 'D': set(), 'E': set()}
    combinations = {frozenset({'B', 'C', 'D', 'E'})}
    results = {('A', frozenset({'B', 'C', 'D', 'E'})): 35}
    subtest_cases.append(SubTestCase(params, conflicts, combinations, results))

    return flow_graph, comp_graph, subtest_cases
Exemple #5
0
def create_test_data_simple(
) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]:
    flow_graph = FlowGraph()

    flow_graph.add_edge('A', 'B', 2.0, None)
    flow_graph.add_edge('B', 'C', 0.7, None)
    flow_graph.add_edge('C', 'D', 0.1, None)
    flow_graph.add_edge('E', 'D', 0.1, None)

    comp_graph = ComputationGraph()

    comp_graph.add_edge('A', 'B', 2.0, 0.5)
    comp_graph.add_edge('B', 'C', 0.7, 1.4285714)
    comp_graph.add_edge('C', 'D', 0.1, None)
    comp_graph.add_edge('E', 'D', 0.1, None)

    comp_graph.graph.nodes['A']['split'] = [False, False]
    comp_graph.graph.nodes['B']['split'] = [False, False]
    comp_graph.graph.nodes['C']['split'] = [False, False]
    comp_graph.graph.nodes['D']['split'] = [False, False]
    comp_graph.graph.nodes['E']['split'] = [False, False]

    subtest_cases: List[SubTestCase] = []

    # Case 0
    params = {'A': 5, 'B': 10, 'C': 4, 'E': 8}
    conflicts = {'A': {'B', 'C'}, 'B': {'C', 'A'}, 'C': {'B', 'A'}, 'E': set()}
    combinations = {
        frozenset({'A', 'E'}),
        frozenset({'B', 'E'}),
        frozenset({'C', 'E'})
    }
    results = {
        ('D', frozenset({'A', 'E'})): 1.5,
        ('D', frozenset({'B', 'E'})): 1.5,
        ('D', frozenset({'C', 'E'})): 1.2
    }
    subtest_cases.append(SubTestCase(params, conflicts, combinations, results))

    return flow_graph, comp_graph, subtest_cases
Exemple #6
0
def create_test_data_star(
) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]:
    flow_graph = FlowGraph()

    flow_graph.add_edge('A', 'B', 0.05, None)
    flow_graph.add_edge('A', 'C', 0.7, None)
    flow_graph.add_edge('A', 'D', 0.1, None)
    flow_graph.add_edge('A', 'E', 0.15, None)

    comp_graph = ComputationGraph()

    comp_graph.add_edge('A', 'B', 0.05, 20.0)
    comp_graph.add_edge('A', 'C', 0.7, 1.4285714)
    comp_graph.add_edge('A', 'D', 0.1, 10.0)
    comp_graph.add_edge('A', 'E', 0.15, 6.66666667)

    comp_graph.graph.nodes['A']['split'] = [True, False]
    comp_graph.graph.nodes['B']['split'] = [False, False]
    comp_graph.graph.nodes['C']['split'] = [False, False]
    comp_graph.graph.nodes['D']['split'] = [False, False]
    comp_graph.graph.nodes['E']['split'] = [False, False]

    subtest_cases: List[SubTestCase] = []

    # Case 0
    params = {'B': 5, 'C': 10, 'D': 8, 'E': 12}
    conflicts = {
        'B': {'C', 'D', 'E'},
        'C': {'B', 'D', 'E'},
        'D': {'B', 'C', 'E'},
        'E': {'B', 'C', 'D'}
    }
    combinations = {
        frozenset({'B'}),
        frozenset({'C'}),
        frozenset({'D'}),
        frozenset({'E'})
    }
    results = {
        ('A', frozenset({'B'})): 100,
        ('A', frozenset({'C'})): 14.285714,
        ('A', frozenset({'D'})): 80,
        ('A', frozenset({'E'})): 80
    }
    subtest_cases.append(SubTestCase(params, conflicts, combinations, results))

    # Case 1
    params = {'A': 5, 'B': 10}
    conflicts = {'A': {'B'}, 'B': {'A'}}
    combinations = {frozenset({'A'}), frozenset({'B'})}
    results = {
        ('A', frozenset({'B'})): 200,
        ('A', frozenset({'A'})): 5,
        ('B', frozenset({'B'})): 10,
        ('B', frozenset({'A'})): 0.25,
        ('C', frozenset({'B'})): 140,
        ('C', frozenset({'A'})): 3.5
    }
    subtest_cases.append(SubTestCase(params, conflicts, combinations, results))

    return flow_graph, comp_graph, subtest_cases
def flow_graph_solver(global_parameters: List[Parameter],
                      problem_statement: ProblemStatement,
                      input_systems: Dict[str, Set[Processor]], state: State):
    """
    * First scales have to be solved
    * Second direct flows
    * Third conversions of flows

    Once flows have been found, Indicators have to be gathered.

    :param global_parameters: Parameters including the default value (if defined)
    :param problem_statement: ProblemStatement object, with scenarios (parameters changing the default)
                              and parameters for the solver
    :param state: State with everything
    :param input_systems: A dictionary of the different systems to be solved
    :return: Issue[]
    """
    class Edge(NamedTuple):
        src: Factor
        dst: Factor
        weight: Optional[str]

    def add_edges(edges: List[Edge]):
        for src, dst, weight in edges:
            src_name = get_interface_name(src, glb_idx)
            dst_name = get_interface_name(dst, glb_idx)
            if "Archetype" in [
                    src.processor.instance_or_archetype,
                    dst.processor.instance_or_archetype
            ]:
                print(
                    f"WARNING: excluding relation from '{src_name}' to '{dst_name}' because of Archetype processor"
                )
            else:
                relations.add_edge(src_name, dst_name, weight=weight)

    glb_idx, _, _, _, _ = get_case_study_registry_objects(state)

    # Get all interface observations. Also resolve expressions without parameters. Cannot resolve expressions
    # depending only on global parameters because some of them can be overridden by scenario parameters.
    time_observations_absolute, time_observations_relative = get_observations_by_time(
        glb_idx)

    if len(time_observations_absolute) == 0:
        raise Exception(
            f"No absolute observations have been found. The solver has nothing to solve."
        )

    relations = nx.DiGraph()

    # Add Interfaces -Flow- relations (time independent)
    add_edges([
        Edge(r.source_factor, r.target_factor, r.weight) for r in glb_idx.get(
            FactorsRelationDirectedFlowObservation.partial_key())
    ])

    # Add Processors -Scale- relations (time independent)
    add_edges([
        Edge(r.origin, r.destination, r.quantity)
        for r in glb_idx.get(FactorsRelationScaleObservation.partial_key())
    ])

    # TODO Expand flow graph with it2it transforms
    # relations_scale_it2it = glb_idx.get(FactorTypesRelationUnidirectionalLinearTransformObservation.partial_key())

    # First pass to resolve weight expressions: only expressions without parameters can be solved
    for _, _, data in relations.edges(data=True):
        expression = data["weight"]
        if expression:
            value, ast, _, _ = evaluate_numeric_expression_with_parameters(
                expression, state)
            data["weight"] = ifnull(value, ast)

    for scenario_idx, (scenario_name, scenario_params) in enumerate(
            problem_statement.scenarios.items()):

        print(f"********************* SCENARIO: {scenario_name}")

        scenario_state = State()
        scenario_combined_params = evaluate_parameters_for_scenario(
            global_parameters, scenario_params)
        scenario_state.update(scenario_combined_params)

        for time_period, observations in time_observations_absolute.items():

            print(f"********************* TIME PERIOD: {time_period}")

            # Final values are taken from "observations" that need to computed
            graph_params = {}

            # Second and last pass to resolve observation expressions with parameters
            for expression, obs in observations:
                interface_name = get_interface_name(obs.factor, glb_idx)
                if interface_name not in relations.nodes:
                    print(
                        f"WARNING: observation at interface '{interface_name}' is not taken into account."
                    )
                else:
                    value, ast, _, issues = evaluate_numeric_expression_with_parameters(
                        expression, scenario_state)
                    if not value:
                        raise Exception(
                            f"Cannot evaluate expression '{expression}' for observation at "
                            f"interface '{interface_name}'. Issues: {', '.join(issues)}"
                        )
                    graph_params[interface_name] = value

            assert (graph_params is not None)

            # Add Processors internal -RelativeTo- relations (time dependent)
            # Transform relative observations into graph edges
            for expression, obs in time_observations_relative[time_period]:
                relations.add_edge(get_interface_name(obs.relative_factor,
                                                      glb_idx),
                                   get_interface_name(obs.factor, glb_idx),
                                   weight=expression)

            # Second and last pass to resolve weight expressions: expressions with parameters can be solved
            for u, v, data in relations.edges(data=True):
                expression = data["weight"]
                if expression:
                    value, ast, _, _ = evaluate_numeric_expression_with_parameters(
                        expression, scenario_state)
                    if not value:
                        raise Exception(
                            f"Cannot evaluate expression '{expression}' for weight "
                            f"from interface '{u}' to interface '{v}'. Issues: {', '.join(issues)}"
                        )
                    data["weight"] = value

            # ----------------------------------------------------

            if time_period == '2008':
                for component in nx.weakly_connected_components(relations):
                    nx.draw_kamada_kawai(relations.subgraph(component),
                                         with_labels=True)
                    plt.show()

            flow_graph = FlowGraph(relations)
            comp_graph, issues = flow_graph.get_computation_graph()

            for issue in issues:
                print(issue)

            print(f"****** NODES: {comp_graph.nodes}")

            # ----------------------------------------------------

            # Obtain nodes without a value
            compute_nodes = [
                n for n in comp_graph.nodes if not graph_params.get(n)
            ]

            # Compute the missing information with the computation graph
            if len(compute_nodes) == 0:
                print("All nodes have a value. Nothing to solve.")
                return []

            print(f"****** UNKNOWN NODES: {compute_nodes}")
            print(f"****** PARAMS: {graph_params}")

            conflicts = comp_graph.compute_param_conflicts(
                set(graph_params.keys()))

            for s, (param, values) in enumerate(conflicts.items()):
                print(f"Conflict {s + 1}: {param} -> {values}")

            combinations = ComputationGraph.compute_param_combinations(
                conflicts)

            for s, combination in enumerate(combinations):
                print(f"Combination {s}: {combination}")

                filtered_params = {
                    k: v
                    for k, v in graph_params.items() if k in combination
                }
                results, _ = comp_graph.compute_values(compute_nodes,
                                                       filtered_params)

                results_with_values = {k: v for k, v in results.items() if v}
                print(f'  results_with_values={results_with_values}')

                # TODO: work with "part_of_graph"
                #  - Params: graph_params + results
                #  - Compute conflicts, combinations
                #  - For each combination "compute_values"

        # TODO INDICATORS

    # ----------------------------------------------------
    # ACCOUNTING PER SYSTEM

    for system in input_systems:

        # Handle Processors -PartOf- relations
        proc_hierarchy = nx.DiGraph()
        for relation in glb_idx.get(
                ProcessorsRelationPartOfObservation.partial_key(
                )):  # type: ProcessorsRelationPartOfObservation
            if relation.parent_processor.instance_or_archetype == "Instance":
                proc_hierarchy.add_edge(
                    get_processor_name(relation.child_processor, glb_idx),
                    get_processor_name(relation.parent_processor, glb_idx))

        part_of_graph = ComputationGraph()

        # for relation in system_flows[system]:  # type: FactorsRelationDirectedFlowObservation
        #
        #     # We create another graph only with interfaces in processors with parents
        #     for interface in [relation.source_factor, relation.target_factor]:
        #
        #         processor_name = get_processor_name(interface.processor, glb_idx)
        #         interface_full_name = processor_name+":"+interface.name
        #
        #         # If "processor" is in the "PartOf" hierarchy AND the "processor:interface" is not being handled yet
        #         if processor_name in proc_hierarchy and interface_full_name not in part_of_graph.nodes:
        #             # Insert into the Computation Graph a copy of the "PartOf" hierarchy of processors
        #             # for the specific interface
        #             new_edges = [(u+":"+interface.name, v+":"+interface.name)
        #                          for u, v in weakly_connected_subgraph(proc_hierarchy, processor_name).edges]
        #             part_of_graph.add_edges(new_edges, 1.0, None)

        # for component in nx.weakly_connected_components(part_of_graph.graph):
        #     nx.draw_kamada_kawai(part_of_graph.graph.subgraph(component), with_labels=True)
        #     plt.show()

    return []
def flow_graph_solver(global_parameters: List[Parameter],
                      problem_statement: ProblemStatement,
                      input_systems: Dict[str, Set[Processor]], state: State):
    """
    * First scales have to be solved
    * Second direct flows
    * Third conversions of flows

    Once flows have been found, Indicators have to be gathered.

    :param global_parameters: Parameters including the default value (if defined)
    :param problem_statement: ProblemStatement object, with scenarios (parameters changing the default)
                              and parameters for the solver
    :param state: State with everything
    :param input_systems: A dictionary of the different systems to be solved
    :return: Issue[]
    """

    glb_idx, _, _, _, _ = get_case_study_registry_objects(state)

    # Initialize dictionaries
    system_flows: Dict[str,
                       Set[FactorsRelationDirectedFlowObservation]] = dict()
    system_scales: Dict[str, Set[FactorsRelationScaleObservation]] = dict()
    system_processor_hierarchies: Dict[str, nx.DiGraph] = dict()
    for s in input_systems:
        system_flows[s] = set()
        system_scales[s] = set()
        system_processor_hierarchies[s] = dict()

    # Handle Interface Types -Scale- relations
    relations_scale_it2it = glb_idx.get(
        FactorTypesRelationUnidirectionalLinearTransformObservation.
        partial_key())

    # Handle Interfaces -Flow- relations
    relations_flow = glb_idx.get(
        FactorsRelationDirectedFlowObservation.partial_key())

    for relation in relations_flow:  # type: FactorsRelationDirectedFlowObservation
        system_flows[relation.source_factor.processor.processor_system].add(
            relation)
        system_flows[relation.target_factor.processor.processor_system].add(
            relation)

    relations_scale = glb_idx.get(
        FactorsRelationScaleObservation.partial_key())

    for relation in relations_scale:  # type: FactorsRelationScaleObservation
        system_scales[relation.origin.processor.processor_system].add(relation)
        system_scales[relation.destination.processor.processor_system].add(
            relation)

    # Handle Processors -PartOf- relations
    relations_part_of = glb_idx.get(
        ProcessorsRelationPartOfObservation.partial_key())

    for relation in relations_part_of:  # type: ProcessorsRelationPartOfObservation
        if relation.parent_processor.instance_or_archetype.lower(
        ) == "instance":
            graph = system_processor_hierarchies[
                relation.parent_processor.processor_system]

            if not graph:
                graph = nx.DiGraph()
                system_processor_hierarchies[
                    relation.parent_processor.processor_system] = graph

            graph.add_edge(
                get_processor_name(relation.child_processor, glb_idx),
                get_processor_name(relation.parent_processor, glb_idx))

    # Get all interface observations. Also resolve expressions without parameters. Cannot resolve expressions
    # depending only on global parameters because some of them can be overridden by scenario parameters.
    observations_by_time = get_observations_by_time(glb_idx)

    if len(observations_by_time) == 0:
        raise Exception(
            f"No observations have been found. The solver has nothing to solve."
        )

    # Split observations into relative and not relative
    observations_by_time_norelative , observations_by_time_relative = \
        split_observations_by_relativeness(observations_by_time)

    # Combine scenario parameters with the global parameters
    scenario_parameters: Dict[str, Dict[str, str]] = \
        {scenario_name: evaluate_parameters_for_scenario(global_parameters, scenario_params)
         for scenario_name, scenario_params in problem_statement.scenarios.items()}

    # SCALES --------------------------

    # Obtain the scale VALUES
    # scales_prd = get_scaled(scenarios=problem_statement.scenarios,
    #                         scenario_params=scenario_parameters,
    #                         relations_scale=glb_idx.get(FactorsRelationScaleObservation.partial_key()),
    #                         observations_by_time=observations_by_time_norelative)

    # FLOWS --------------------------
    for system in input_systems:
        # From Factors IN the context (LOCAL, ENVIRONMENT or OUTSIDE)
        # obtain a basic graph. Signal each Factor as LOCAL or EXTERNAL, and SOCIETY or ENVIRONMENT
        # basic_graph = prepare_interfaces_graph(systems[s][Factor])

        print(f"********************* SYSTEM: {system}")

        # Obtain a flow graph
        flow_graph = FlowGraph()
        part_of_graph = ComputationGraph()

        for relation in system_flows[
                system]:  # type: FactorsRelationDirectedFlowObservation
            flow_graph.add_edge(get_interface_name(relation.source_factor,
                                                   glb_idx),
                                get_interface_name(relation.target_factor,
                                                   glb_idx),
                                weight=relation.weight,
                                reverse_weight=None)

            assert (relation.source_factor.name == relation.target_factor.name)

            # We create another graph only with interfaces in processors with parents
            proc_hierarchy = system_processor_hierarchies[system]

            for interface in [relation.source_factor, relation.target_factor]:

                processor_name = get_processor_name(interface.processor,
                                                    glb_idx)
                interface_full_name = processor_name + ":" + interface.name

                # If "processor" is in the "PartOf" hierarchy AND the "processor:interface" is not being handled yet
                if processor_name in proc_hierarchy and interface_full_name not in part_of_graph.nodes:
                    # Insert into the Computation Graph a copy of the "PartOf" hierarchy of processors
                    # for the specific interface
                    new_edges = [(u + ":" + interface.name,
                                  v + ":" + interface.name)
                                 for u, v in weakly_connected_subgraph(
                                     proc_hierarchy, processor_name).edges]
                    part_of_graph.add_edges(new_edges, 1.0, None)

        comp_graph, issues = flow_graph.get_computation_graph()

        for relation in system_scales[
                system]:  # type: FactorsRelationScaleObservation
            comp_graph.add_edge(get_interface_name(relation.origin, glb_idx),
                                get_interface_name(relation.destination,
                                                   glb_idx),
                                weight=relation.quantity,
                                reverse_weight=None)

        for issue in issues:
            print(issue)

        print(f"****** NODES: {comp_graph.nodes}")

        # for component in nx.weakly_connected_components(part_of_graph.graph):
        #     nx.draw_kamada_kawai(part_of_graph.graph.subgraph(component), with_labels=True)
        #     plt.show()

        # TODO Expand flow graph with it2it transforms

        # Split flow graphs
        for scenario_idx, (scenario_name, scenario) in enumerate(
                problem_statement.scenarios.items()):

            print(f"********************* SCENARIO: {scenario_name}")

            scenario_state = State()
            scenario_state.update(scenario_parameters[scenario_name])

            for time_period, observations in observations_by_time_norelative.items(
            ):

                print(f"********************* TIME PERIOD: {time_period}")

                scales = {
                }  # {fact: val for fact, val in scales_prd.get(dict(__t=time_period, __s=scenario_idx))}

                # Final values are taken from "scales" or from "observations" that need to computed
                graph_params = {}
                for expression, obs in observations:
                    interface_name = get_interface_name(obs.factor, glb_idx)
                    if interface_name not in comp_graph.nodes:
                        print(
                            f"WARNING: observation at interface '{interface_name}' is not taken into account."
                        )
                    else:
                        if scales.get(obs.factor):
                            graph_params[interface_name] = scales[obs.factor]
                        else:
                            value, ast, _, issues = evaluate_numeric_expression_with_parameters(
                                expression, scenario_state)
                            if not value:
                                raise Exception(
                                    f"Cannot evaluate expression '{expression}' for observation at interface '{interface_name}'"
                                )

                            graph_params[interface_name] = value

                # ----------------------------------------------------

                compute_nodes = [
                    n for n in comp_graph.nodes if not graph_params.get(n)
                ]

                # Compute the missing information with the computation graph
                if len(compute_nodes) > 0:

                    print(f"****** UNKNOWN NODES: {compute_nodes}")
                    print(f"****** PARAMS: {graph_params}")

                    conflicts = comp_graph.compute_param_conflicts(
                        set(graph_params.keys()))

                    for s, (param, values) in enumerate(conflicts.items()):
                        print(f"Conflict {s + 1}: {param} -> {values}")

                    combinations = ComputationGraph.compute_param_combinations(
                        conflicts)

                    for s, combination in enumerate(combinations):
                        print(f"Combination {s}: {combination}")

                        filtered_params = {
                            k: v
                            for k, v in graph_params.items()
                            if k in combination
                        }
                        results, _ = comp_graph.compute_values(
                            compute_nodes, filtered_params)

                        results_with_values = {
                            k: v
                            for k, v in results.items() if v
                        }
                        print(f'  results_with_values={results_with_values}')

                        # TODO: work with "part_of_graph"
                        #  - Params: graph_params + results
                        #  - Compute conflicts, combinations
                        #  - For each combination "compute_values"
                else:
                    print(
                        "There aren't nodes with unknown values. Nothing to solve."
                    )

                # TODO Overwrite "obs" with "scales" results
                # TODO Put observations into the flow-graph

                # TODO Put processors into scale (intensive to extensive conversion)
                # scale_unit_processors(flow_graph, params, relative_observations_prd)

                # for sub_fg in nx.weakly_connected_component_subgraphs(flow_graph):
                # TODO Elaborate information flow graph
                #      Cycles allowed?
                # ifg = get_information_flow_graph(sub_fg)
                # TODO Solve information flow graph. From all possible combinations:
                #  bottom-up if top-down USE
                #  bottom-up if top-down DO NOT USE
                #  top-down  if bottom-up USE
                #  top-down  if bottom-up DO NOT USE
                # solve_flow_graph(sub_fg, ifg)  # Each value: Interface, Scenario, Time, Given/Computed -> VALUE (or UNDEFINED)
                # TODO Put results back

        # TODO INDICATORS --- (INSIDE FLOWS)

    return []