def get_container_diskio_usage(docker_id, start, end):
    """获取磁盘IO数据
    start, end单位为毫秒,和数据平台保持一致
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'sum by (id, name) (rate(container_fs_reads_bytes_total{{id=~".*{ docker_id }.*"}}[1m]))'
    read = query_range(porm_query, start, end, step)
    if read.get('status') != 'success':
        return []

    porm_query = f'sum by (id, name) (rate(container_fs_writes_bytes_total{{id=~".*{ docker_id }.*"}}[1m]))'
    writes = query_range(porm_query, start, end, step)
    if writes.get('status') != 'success':
        return []

    if not read['data']['result'] or not writes['data']['result']:
        return []

    data = []
    metric = read['data']['result'][0]['metric']
    read_dict = dict(read['data']['result'][0]['values'])
    writes_dict = dict(writes['data']['result'][0]['values'])
    for k, v in read_dict.items():
        data.append({
            'time': k * 1000,
            'used_pct': 0,  # 兼容字段
            'container_name': metric['name'],
            'read_bytes': normalize_metric(read_dict.get(k, 0)),  # 转化为Bytes
            'write_bytes': normalize_metric(writes_dict.get(k, 0))  # 转化为Bytes
        })
    return data
Exemple #2
0
    def get_bk_data(self, data, cc_app_id):
        """数据平台返回
        """
        _data = apigw_data.get_node_metrics(
            data['metric'], cc_app_id, data['res_id'], data['start_at'], data['end_at'])

        metrics_data = []
        if data['metric'] == 'io':
            metric_list = groupby(sorted(_data['list'],
                                         key=lambda x: x['device_name']), key=lambda x: x['device_name'])
            for device_name, metrics in metric_list:
                metrics_data.append({'device_name': device_name,
                                     'metrics': [{'rkb_s': normalize_metric(i['rkb_s']),
                                                  'wkb_s': normalize_metric(i['wkb_s']),
                                                  'time': i['time']} for i in metrics]})
            _data['list'] = metrics_data
        elif data['metric'] == 'cpu_summary':
            for i in _data['list']:
                i['usage'] = normalize_metric(i['usage'])
        elif data['metric'] == 'net':
            metric_list = groupby(sorted(_data['list'],
                                         key=lambda x: x['device_name']), key=lambda x: x['device_name'])
            for device_name, metrics in metric_list:
                metrics_data.append({'device_name': device_name,
                                     'metrics': [{'speedSent': i['speedSent'],
                                                  'speedRecv': i['speedRecv'],
                                                  'time': i['time']} for i in metrics]})
            _data['list'] = metrics_data
        return _data
def get_container_network_usage(docker_id, start, end):
    """获取网络数据
    start, end单位为毫秒,和数据平台保持一致
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'sum by (id, name) (rate(container_network_receive_bytes_total{{id=~".*{ docker_id }.*"}}[1m]))'
    receive = query_range(porm_query, start, end, step)
    if receive.get('status') != 'success':
        return []

    porm_query = f'sum by (id, name) (rate(container_network_transmit_bytes_total{{id=~".*{ docker_id }.*"}}[1m]))'
    transmit = query_range(porm_query, start, end, step)
    if transmit.get('status') != 'success':
        return []

    if not receive['data']['result'] or not transmit['data']['result']:
        return []

    data = []
    metric = receive['data']['result'][0]['metric']
    receive_dict = dict(receive['data']['result'][0]['values'])
    transmit_dict = dict(transmit['data']['result'][0]['values'])
    for k, v in receive_dict.items():
        data.append({
            'time': k * 1000,
            'container_name': metric['name'],
            'rxbytes': normalize_metric(receive_dict.get(k, 0)),
            'txbytes': normalize_metric(transmit_dict.get(k, 0))
        })
    return data
Exemple #4
0
    def get_bk_data(self, data, cc_app_id):
        _data = apigw_data.get_docker_metrics(data['metric'], cc_app_id,
                                              data['res_id'], data['start_at'],
                                              data['end_at'])

        metrics_data = []
        if data['metric'] == 'disk':
            metric_list = groupby(sorted(_data['list'],
                                         key=lambda x: x['device_name']),
                                  key=lambda x: x['device_name'])
            for device_name, metrics in metric_list:
                metrics_data.append({
                    'device_name':
                    device_name,
                    'metrics': [{
                        'used_pct': normalize_metric(i['used_pct']),
                        'time': i['time']
                    } for i in metrics]
                })
            _data['list'] = metrics_data
        elif data['metric'] == 'cpu_summary':
            for i in _data['list']:
                i['usage'] = normalize_metric(i.get('cpu_totalusage'))
                i.pop('cpu_totalusage', None)
        elif data['metric'] == 'mem':
            for i in _data['list']:
                i['rss_pct'] = normalize_metric(i['rss_pct'])
        elif data['metric'] == 'net':
            for i in _data['list']:
                i['rxpackets'] = int(i['rxpackets'])
                i['txbytes'] = int(i['txbytes'])
                i['rxbytes'] = int(i['rxbytes'])
                i['txpackets'] = int(i['txpackets'])
        return _data
def get_node_memory_usage(ip, start, end):
    """获取CPU总使用率
    start, end单位为毫秒,和数据平台保持一致
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'node_memory_MemTotal{{job="node-exporter", instance=~"{ ip }:9100"}}'
    total = query_range(porm_query, start, end, step)
    if total.get('status') != 'success':
        return []

    porm_query = f"""
        node_memory_MemTotal{{job="node-exporter", instance=~"{ ip }:9100"}} -
        node_memory_MemFree{{job="node-exporter", instance=~"{ ip }:9100"}} -
        node_memory_Buffers{{job="node-exporter", instance=~"{ ip }:9100"}} -
        node_memory_Cached{{job="node-exporter", instance=~"{ ip }:9100"}}"""
    usage = query_range(porm_query, start, end, step)
    if usage.get('status') != 'success':
        return []

    if not total['data']['result'] or not usage['data']['result']:
        return []

    data = []
    total_dict = dict(total['data']['result'][0]['values'])
    usage_dict = dict(usage['data']['result'][0]['values'])
    for k, v in total_dict.items():
        data.append({
            'time': k * 1000,
            'total': normalize_metric(total_dict.get(k, 0)),
            'used': normalize_metric(usage_dict.get(k, 0))
        })
    return data
def get_node_network_usage(ip, start, end):
    """获取网络数据
    start, end单位为毫秒,和数据平台保持一致
    数据单位KB/s
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'max by (instance) (rate(node_network_receive_bytes{{job="node-exporter", instance=~"{ ip }:9100"}}[5m]))'  # noqa
    receive = query_range(porm_query, start, end, step)
    if receive.get('status') != 'success':
        return []

    porm_query = f'max by (instance) (rate(node_network_transmit_bytes{{job="node-exporter", instance=~"{ ip }:9100"}}[5m]))'  # noqa
    transmit = query_range(porm_query, start, end, step)
    if transmit.get('status') != 'success':
        return []

    if not receive['data']['result'] or not transmit['data']['result']:
        return []

    data = []
    receive_dict = dict(receive['data']['result'][0]['values'])
    transmit_dict = dict(transmit['data']['result'][0]['values'])
    for k, v in receive_dict.items():
        data.append({
            'time':
            k * 1000,
            'speedRecv':
            normalize_metric(float(receive_dict.get(k, 0)) / 1024),
            'speedSent':
            normalize_metric(float(transmit_dict.get(k, 0)) / 1024)
        })
    return data
def get_node_diskio_usage(ip, start, end):
    """获取磁盘IO数据
    start, end单位为毫秒,和数据平台保持一致
    数据单位KB/s
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'max by (instance) (rate(node_disk_bytes_read{{job="node-exporter", instance=~"{ ip }:.*"}}[5m]))'
    read = query_range(porm_query, start, end, step)
    if read.get('status') != 'success':
        return []

    porm_query = f'max by (instance) (rate(node_disk_bytes_written{{job="node-exporter", instance=~"{ ip }:.*"}}[5m]))'
    written = query_range(porm_query, start, end, step)
    if written.get('status') != 'success':
        return []

    if not read['data']['result'] or not written['data']['result']:
        return []

    read_dict = dict(read['data']['result'][0]['values'])
    written_dict = dict(written['data']['result'][0]['values'])
    data = []
    for k, v in read_dict.items():
        data.append({
            'time':
            k * 1000,
            'rkb_s':
            normalize_metric(float(read_dict.get(k, 0)) / 1024),
            'wkb_s':
            normalize_metric(float(written_dict.get(k, 0)) / 1024)
        })
    return data
Exemple #8
0
    def cluster_info(self, request, project_id, cluster_id):
        # can view cluster
        self.can_view_cluster(request, project_id, cluster_id)
        cluster = self.get_cluster(request, project_id, cluster_id)
        cluster["cluster_name"] = cluster.get("name")
        cluster["created_at"] = normalize_datetime(cluster["created_at"])
        cluster["updated_at"] = normalize_datetime(cluster["updated_at"])
        status = cluster.get("status", "normal")
        cluster["chinese_status_name"] = ClusterStatusName[status].value
        # get area info
        area_info = self.get_area(request, cluster.get("area_id"))
        cluster["area_name"] = _(area_info.get("chinese_name"))
        # get master count
        cluster["master_count"] = self.get_master_count(request, project_id, cluster_id)
        # get node count
        cluster["node_count"] = self.get_node_count(request, project_id, cluster_id)
        if request.project.kind == app_constants.MESOS_KIND:
            # mesos单位是MB,需要转换为GB
            total_mem = normalize_metric(cluster["total_mem"] / 1024)
        else:
            total_mem = normalize_metric(cluster["total_mem"])
        cluster["total_mem"] = total_mem

        # 获取集群调度引擎
        coes = cluster["type"]
        # 补充tke和bcs k8s相关配置
        if coes == ClusterCOES.TKE.value:
            cluster.update(self.get_tke_cluster_config(request, project_id, cluster_id))
        elif coes == ClusterCOES.BCS_K8S.value:
            k8s_client = bcs.k8s.K8SClient(request.user.token.access_token, project_id, cluster_id, None)
            cluster["version"] = k8s_client.version

        return response.Response(cluster)
Exemple #9
0
    def get_multi_bk_data(self, data, cc_app_id):
        _data = apigw_data.get_docker_metrics(
            data['metric'], cc_app_id, data['res_id_list'], data['start_at'], data['end_at']
        )

        metrics_data = []
        if data['metric'] == 'cpu_summary':
            metric_list = groupby(sorted(_data['list'], key=lambda x: x['id']), key=lambda x: x['id'])
            for _id, metrics in metric_list:
                container_name = ''
                _metrics = []
                for i in metrics:
                    container_name = i['container_name']
                    _metrics.append(
                        {
                            'usage': normalize_metric(i.get('cpu_totalusage')),
                            'time': i['time'],
                        }
                    )
                metrics_data.append({'id': _id, 'container_name': container_name, 'metrics': _metrics})
            _data['list'] = metrics_data

        elif data['metric'] == 'mem':
            metric_list = groupby(sorted(_data['list'], key=lambda x: x['id']), key=lambda x: x['id'])
            for _id, metrics in metric_list:
                container_name = ''
                _metrics = []
                for i in metrics:
                    container_name = i['container_name']
                    _metrics.append({'rss_pct': normalize_metric(i['rss_pct']), 'time': i['time']})
                metrics_data.append({'id': _id, 'container_name': container_name, 'metrics': _metrics})

            _data['list'] = metrics_data
        return _data
Exemple #10
0
 def compose_metric(self, request, cluster_data):
     metrics_cpu, metrics_mem, metrics_disk = [], [], []
     for i in cluster_data['results']:
         time = arrow.get(i['capacity_updated_at']).timestamp * 1000
         metrics_cpu.append({
             'time': time,
             'remain_cpu': num_transform(i['remain_cpu']),
             'total_cpu': i['total_cpu']
         })
         total_mem = normalize_metric(i['total_mem'])
         remain_mem = normalize_metric(num_transform(i['remain_mem']))
         metrics_mem.append({
             'time': time,
             'remain_mem': remain_mem,
             'total_mem': total_mem
         })
         # add disk metric
         metrics_disk.append({
             'time':
             time,
             'remain_disk':
             normalize_metric(num_transform(i['remain_disk']) / 1024),
             'total_disk':
             normalize_metric(i['total_disk'] / 1024),
         })
     return metrics_cpu, metrics_mem, metrics_disk
Exemple #11
0
    def get_bk_data(self, res_id, cc_app_id):
        """数据平台"""
        cpu_metrics = apigw_data.get_node_metrics('cpu_summary',
                                                  cc_app_id,
                                                  res_id,
                                                  limit=1)
        if cpu_metrics['list']:
            cpu_metrics = normalize_metric(cpu_metrics['list'][0]['usage'])
        else:
            cpu_metrics = 0

        mem_metrics = apigw_data.get_node_metrics('mem',
                                                  cc_app_id,
                                                  res_id,
                                                  limit=1)
        if mem_metrics['list']:
            mem_metrics = normalize_metric(mem_metrics['list'][0]['used'] *
                                           100.0 /
                                           mem_metrics['list'][0]['total'])
        else:
            mem_metrics = 0

        # device_name 有很多,需要处理
        io_metrics = apigw_data.get_node_metrics('io',
                                                 cc_app_id,
                                                 res_id,
                                                 limit=1)

        if io_metrics['list']:
            io_metrics = normalize_metric(io_metrics['list'][0]['util'])
        else:
            io_metrics = 0

        data = {'cpu': cpu_metrics, 'mem': mem_metrics, 'io': io_metrics}
        return data
Exemple #12
0
    def cluster_info(self, request, project_id, cluster_id):
        # can view cluster
        self.can_view_cluster(request, project_id, cluster_id)
        cluster = self.get_cluster(request, project_id, cluster_id)
        cluster["cluster_name"] = cluster.get("name")
        cluster["created_at"] = normalize_datetime(cluster["created_at"])
        cluster["updated_at"] = normalize_datetime(cluster["updated_at"])
        status = cluster.get("status", "normal")
        cluster["chinese_status_name"] = ClusterStatusName[status].value
        # get area info
        area_info = self.get_area(request, cluster.get("area_id"))
        cluster["area_name"] = _(area_info.get("chinese_name"))
        # get master count
        cluster["master_count"] = self.get_master_count(
            request, project_id, cluster_id)
        # get node count
        cluster["node_count"] = self.get_node_count(request, project_id,
                                                    cluster_id)
        if request.project.kind == app_constants.MESOS_KIND:
            # mesos单位是MB,需要转换为GB
            total_mem = normalize_metric(cluster["total_mem"] / 1024)
        else:
            total_mem = normalize_metric(cluster["total_mem"])
        cluster["total_mem"] = total_mem

        return response.Response(cluster)
def fixed_disk_usage_history(cluster_id):
    """k8s磁盘使用率
    单位是 GB
    """
    end = arrow.now().timestamp * 1000
    start = end - 60 * 60 * 1000
    cluster_list = [cluster_id]
    total, free = get_cluster_disk_usage(cluster_list, start, end)

    total_dist = total.get(cluster_id) or []
    free_dist = free.get(cluster_id) or []

    total_dict = dict(total_dist)
    free_dict = dict(free_dist)
    data = []
    for k, v in total_dict.items():
        data.append({
            'time':
            k * 1000,
            'total_disk':
            normalize_metric(
                float(total_dict.get(k, 0)) / (1024 * 1024 * 1024)),
            'remain_disk':
            normalize_metric(
                float(free_dict.get(k, 0)) / (1024 * 1024 * 1024))
        })
    return data
Exemple #14
0
    def cluster_info(self, request, project_id, cluster_id):
        # can view cluster
        self.can_view_cluster(request, project_id, cluster_id)
        cluster = self.get_cluster(request, project_id, cluster_id)
        cluster['cluster_name'] = cluster.get('name')
        cluster['created_at'] = normalize_datetime(cluster['created_at'])
        cluster['updated_at'] = normalize_datetime(cluster['updated_at'])
        status = cluster.get('status', 'normal')
        cluster['chinese_status_name'] = ClusterStatusName[status].value
        # get area info
        area_info = self.get_area(request, cluster.get('area_id'))
        cluster['area_name'] = _(area_info.get('chinese_name'))
        # get master count
        cluster['master_count'] = self.get_master_count(
            request, project_id, cluster_id)
        # get node count
        cluster['node_count'] = self.get_node_count(request, project_id,
                                                    cluster_id)
        if request.project.kind == app_constants.MESOS_KIND:
            # mesos单位是MB,需要转换为GB
            total_mem = normalize_metric(cluster['total_mem'] / 1024)
        else:
            total_mem = normalize_metric(cluster['total_mem'])
        cluster['total_mem'] = total_mem

        return response.Response(cluster)
Exemple #15
0
    def cluster_info(self, request, project_id, cluster_id):
        # can view cluster
        self.can_view_cluster(request, project_id, cluster_id)
        cluster = self.get_cluster(request, project_id, cluster_id)
        cluster["cluster_name"] = cluster.get("name")
        cluster["created_at"] = normalize_datetime(cluster["created_at"])
        cluster["updated_at"] = normalize_datetime(cluster["updated_at"])
        status = cluster.get("status", "normal")
        cluster["chinese_status_name"] = ClusterStatusName[status].value
        # get area info
        area_info = self.get_area(request, cluster.get("area_id"))
        cluster["area_name"] = _(area_info.get("chinese_name"))
        # get master count
        cluster["master_count"] = self.get_master_count(request, project_id, cluster_id)
        # get node count
        cluster["node_count"] = self.get_node_count(request, project_id, cluster_id)
        total_mem = normalize_metric(cluster["total_mem"])
        cluster["total_mem"] = total_mem

        # 获取集群调度引擎
        coes = cluster["type"]
        # 补充tke和bcs k8s相关配置
        if coes == ClusterCOES.TKE.value:
            cluster.update(self.get_tke_cluster_config(request, project_id, cluster_id))

        cluster_version = self.query_cluster_version(request.user.token.access_token, project_id, cluster_id)
        # 通过集群查询集群版本,如果查询集群异常,则返回集群快照中的数据
        if cluster_version:
            cluster["version"] = cluster_version

        return response.Response(cluster)
Exemple #16
0
    def get_prom_data(self, res_id):
        """prometheus数据
        """
        end_at = int(time.time()) * 1000
        start_at = end_at - 60 * 10 * 1000

        metric_data = prometheus.get_node_cpu_usage(res_id, start_at, end_at)
        if metric_data:
            cpu_metrics = metric_data[-1]['usage']
        else:
            cpu_metrics = 0

        metric_data = prometheus.get_node_disk_io_utils(
            res_id, start_at, end_at)
        if metric_data:
            io_metrics = metric_data[-1]['usage']
        else:
            io_metrics = 0

        metric_data = prometheus.get_node_memory_usage(res_id, start_at,
                                                       end_at)
        if metric_data:
            mem_metrics = normalize_metric(metric_data[-1]['used'] * 100.0 /
                                           metric_data[-1]['total'])
        else:
            mem_metrics = 0

        data = {'cpu': cpu_metrics, 'mem': mem_metrics, 'io': io_metrics}
        return data
Exemple #17
0
 def compose_metric(self, request, cluster_data):
     metrics_cpu, metrics_mem, metrics_disk = [], [], []
     for i in cluster_data['results']:
         time = arrow.get(i['capacity_updated_at']).timestamp * 1000
         metrics_cpu.append({
             'time': time,
             'remain_cpu': num_transform(i['remain_cpu']),
             'total_cpu': i['total_cpu']
         })
         if request.project.kind == app_constants.ProjectKind.MESOS.value:
             # transfer GB
             total_mem = normalize_metric(i['total_mem'] / 1024)
             remain_mem = normalize_metric(
                 num_transform(i['remain_mem']) / 1024)
         else:
             total_mem = normalize_metric(i['total_mem'])
             remain_mem = normalize_metric(num_transform(i['remain_mem']))
         metrics_mem.append({
             'time': time,
             'remain_mem': remain_mem,
             'total_mem': total_mem
         })
         # add disk metric
         metrics_disk.append({
             'time':
             time,
             'remain_disk':
             normalize_metric(num_transform(i['remain_disk']) / 1024),
             'total_disk':
             normalize_metric(i['total_disk'] / 1024)
         })
     return metrics_cpu, metrics_mem, metrics_disk
def fixed_disk_usage(cluster_data):
    """k8s磁盘使用率
    单位是 GB
    """
    end = arrow.now().timestamp * 1000
    start = end - 15 * 60 * 1000
    cluster_list = [i['cluster_id'] for i in cluster_data]
    total, free = get_cluster_disk_usage(cluster_list, start, end)

    for cluster in cluster_data:
        total_dist = total.get(cluster['cluster_id']) or []
        total_dist = total_dist[-1][1] if total_dist else 0
        total_disk = normalize_metric(float(total_dist) / (1024 * 1024 * 1024))

        free_dist = free.get(cluster['cluster_id']) or []
        free_dist = free_dist[-1][1] if free_dist else 0
        free_disk = normalize_metric(float(free_dist) / (1024 * 1024 * 1024))

        cluster['total_disk'] = total_disk
        cluster['remain_disk'] = free_disk

    return cluster_data
def get_node_disk_io_utils(ip, start, end):
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'max by (instance) (rate(node_disk_io_time_seconds_total{{job="node-exporter", instance=~"{ ip }:9100"}}[5m]) * 100)'  # noqa
    io_utils = query_range(porm_query, start, end, step)
    if io_utils.get('status') != 'success':
        return []

    if not io_utils['data']['result']:
        return []

    data = []

    for i in io_utils['data']['result'][0]['values']:
        data.append({'time': i[0] * 1000, 'usage': normalize_metric(i[1])})

    return data
def get_container_memory_usage(docker_id, start, end):
    """获取CPU总使用率
    start, end单位为毫秒,和数据平台保持一致
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    if isinstance(docker_id, list):
        docker_id_list = '|'.join('.*%s.*' % i for i in docker_id)
    else:
        docker_id_list = '.*%s.*' % docker_id

    porm_query = f'container_memory_usage_bytes{{id=~"{ docker_id_list }"}}'
    total = query_range(porm_query, start, end, step)
    if total.get('status') != 'success':
        return []

    if not total['data']['result']:
        return []

    data = []

    for res in total['data']['result']:
        _data = res['metric']
        _data['container_name'] = res['metric']['name']
        metrics = []
        for i in res['values']:
            metrics.append({
                'time': i[0] * 1000,
                'rss_pct': 0,
                'container_name': res['metric']['name'],
                'used': normalize_metric(float(i[1]) / 1024 / 1024),
                'unit': 'MB'
            })

        _data['metrics'] = metrics
        data.append(_data)

    # 单个直接返回metrics的值
    if isinstance(docker_id, list):
        return data
    else:
        return data[0]['metrics']
def get_container_cpu_usage(docker_id, start, end):
    """获取CPU总使用率
    start, end单位为毫秒,和数据平台保持一致
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    if isinstance(docker_id, list):
        docker_id_list = '|'.join('.*%s.*' % i for i in docker_id)
    else:
        docker_id_list = '.*%s.*' % docker_id

    porm_query = f'sum by (id, name) (rate(container_cpu_usage_seconds_total{{id=~"{ docker_id_list }"}}[1m]))'
    resp = query_range(porm_query, start, end, step)
    if resp.get('status') != 'success':
        return []

    if not resp['data']['result']:
        return []

    data = []
    for res in resp['data']['result']:
        _data = res['metric']
        _data['container_name'] = res['metric']['name']
        metrics = []
        for i in res['values']:
            metrics.append({
                'time': i[0] * 1000,
                'container_name': res['metric']['name'],
                'usage': normalize_metric(float(i[1]) * 100)
            })
        _data['metrics'] = metrics
        data.append(_data)

    # 单个直接返回metrics的值
    if isinstance(docker_id, list):
        return data
    else:
        return data[0]['metrics']
def get_node_cpu_usage(ip, start, end):
    """获取CPU总使用率
    start, end单位为毫秒,和数据平台保持一致
    """
    start = start // 1000
    end = end // 1000
    step = (end - start) // 60
    porm_query = f'avg by (instance) (sum by (cpu,instance) (irate(node_cpu{{job="node-exporter", mode!="idle", instance=~"{ ip }:9100"}}[2m])))'  # noqa
    resp = query_range(porm_query, start, end, step)
    if resp.get('status') != 'success':
        return []

    if not resp['data']['result']:
        return []

    data = []
    for i in resp['data']['result'][0]['values']:
        data.append({
            'time': i[0] * 1000,
            'usage': normalize_metric(float(i[1]) * 100)
        })
    return data