Exemple #1
0
def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))
    ctx = F.ctx()

    gap = nn.GlobalAttentionPooling(gluon.nn.Dense(1), gluon.nn.Dense(10))
    gap.initialize(ctx=ctx)
    print(gap)
    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
    assert h1.shape[0] == 10 and h1.ndim == 1

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2
Exemple #2
0
def test_dense_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=False, bias=True)
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
    feat = F.randn((100, 5))
    if F.gpu_ctx():
        conv = conv.to(ctx)
        dense_conv = dense_conv.to(ctx)
        feat = feat.to(ctx)

    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)
Exemple #3
0
def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = tf.sparse.to_dense(tf.sparse.reorder(g.adjacency_matrix(ctx=ctx)))

    conv = nn.GraphConv(5, 2, norm='none', bias=True)
    # conv = conv
    print(conv)
    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
Exemple #4
0
def test_dense_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=False, bias=True)
    conv.initialize(ctx=ctx)
    dense_conv.initialize(ctx=ctx)
    dense_conv.weight.set_data(
        conv.weight.data())
    dense_conv.bias.set_data(
        conv.bias.data())
    feat = F.randn((100, 5))

    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)
Exemple #5
0
def test_atomic_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

    feat = F.randn((100, 1))
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
    # current we only do shape check
    assert h.shape[-1] == 4
Exemple #6
0
def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)
Exemple #7
0
def test_edge_predictor(op):
    ctx = F.ctx()
    num_pairs = 3
    in_feats = 4
    out_feats = 5
    h_src = th.randn((num_pairs, in_feats)).to(ctx)
    h_dst = th.randn((num_pairs, in_feats)).to(ctx)

    pred = nn.EdgePredictor(op)
    if op in ['dot', 'cos']:
        assert pred(h_src, h_dst).shape == (num_pairs, 1)
    elif op == 'ele':
        assert pred(h_src, h_dst).shape == (num_pairs, in_feats)
    else:
        assert pred(h_src, h_dst).shape == (num_pairs, 2 * in_feats)
    pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx)
    assert pred(h_src, h_dst).shape == (num_pairs, out_feats)
Exemple #8
0
def test_hetero_embedding(out_dim):
    layer = nn.HeteroEmbedding({
        'user': 2,
        ('user', 'follows', 'user'): 3
    }, out_dim)
    layer = layer.to(F.ctx())

    embeds = layer.weight
    assert embeds['user'].shape == (2, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (3, out_dim)

    embeds = layer({
        'user': F.tensor([0], dtype=F.int64),
        ('user', 'follows', 'user'): F.tensor([0, 2], dtype=F.int64)
    })
    assert embeds['user'].shape == (1, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (2, out_dim)
Exemple #9
0
def test_dense_sage_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(
        sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(
        sage.fc_neigh.bias.data())
    feat = F.randn((100, 5))

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)
Exemple #10
0
def test_dense_sage_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
    sage = nn.SAGEConv(5, 2, 'gcn',)
    dense_sage = nn.DenseSAGEConv(5, 2)
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
    dense_sage.fc.bias.data = sage.fc_neigh.bias.data
    feat = F.randn((100, 5))
    if F.gpu_ctx():
        sage = sage.to(ctx)
        dense_sage = dense_sage.to(ctx)
        feat = feat.to(ctx)

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)
Exemple #11
0
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = th.zeros((g.number_of_edges(), 1)).to(ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randint(0, I, (100, )).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]
Exemple #12
0
def test_set2set():
    g = dgl.DGLGraph(nx.path_graph(10))
    ctx = F.ctx()

    s2s = nn.Set2Set(5, 3, 3)  # hidden size 5, 3 iters, 3 layers
    s2s.initialize(ctx=ctx)
    print(s2s)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = s2s(g, h0)
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2

    # test#2: batched graph
    bg = dgl.batch([g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = s2s(bg, h0)
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.ndim == 2
Exemple #13
0
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))
    sgc = sgc.to(ctx)

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    sgc = sgc.to(ctx)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10
Exemple #14
0
def test_ke_score_funcs():
    ctx = F.ctx()
    num_edges = 30
    num_rels = 3
    nfeats = 4

    h_src = th.randn((num_edges, nfeats)).to(ctx)
    h_dst = th.randn((num_edges, nfeats)).to(ctx)
    rels = th.randint(low=0, high=num_rels, size=(num_edges, )).to(ctx)

    score_func = nn.TransE(num_rels=num_rels, feats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)

    score_func = nn.TransR(num_rels=num_rels, rfeats=nfeats - 1,
                           nfeats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)
Exemple #15
0
def tree2(idtype):
    """Generate a tree
         1
        / \
       4   3
      / \
     2   0
    Edges are from leaves to root.
    """
    g = dgl.DGLGraph().astype(idtype).to(F.ctx())
    g.add_nodes(5)
    g.add_edge(2, 4)
    g.add_edge(0, 4)
    g.add_edge(4, 1)
    g.add_edge(3, 1)
    g.ndata['h'] = F.tensor([0, 1, 2, 3, 4])
    g.edata['h'] = F.randn((4, 10))
    return g
Exemple #16
0
def test_gin_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
    gin_conv.initialize(ctx=ctx)
    print(gin_conv)

    # test #1: basic
    feat = F.randn((g.number_of_nodes(), 5))
    h = gin_conv(g, feat)
    assert h.shape == (20, 5)

    # test #2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin_conv(g, feat)
    return h.shape == (20, 5)
Exemple #17
0
def test_glob_att_pool():
    ctx = F.ctx()
    g = dgl.DGLGraph(nx.path_graph(10))

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
    gap = gap.to(ctx)
    print(gap)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2
Exemple #18
0
def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1),
                         readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).to_dense()
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        for i in range(len(cheb.fc)):
            dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
        if cheb.bias is not None:
            dense_cheb.bias.data = cheb.bias.data
        feat = F.randn((100, 5))
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
        assert F.allclose(out_cheb, out_dense_cheb)
Exemple #19
0
def generate_graph(grad=False, add_data=True):
    g = dgl.DGLGraph().to(F.ctx())
    g.add_nodes(10)
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
    if add_data:
        ncol = F.randn((10, D))
        ecol = F.randn((17, D))
        if grad:
            ncol = F.attach_grad(ncol)
            ecol = F.attach_grad(ecol)
        g.ndata['h'] = ncol
        g.edata['l'] = ecol
    return g
Exemple #20
0
def test_sgc_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((g.number_of_nodes(), 5))
    sgc = sgc.to(ctx)

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    sgc = sgc.to(ctx)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10
Exemple #21
0
def test_hypersparse_query():
    g = dgl.DGLGraph()
    g = g.to(F.ctx())
    g.add_nodes(1000001)
    g.add_edges([0], [1])
    for i in range(10):
        assert g.has_node(i)
        assert i in g
    assert not g.has_node(1000002)
    assert g.edge_id(0, 1) == 0
    src, dst = g.find_edges([0])
    src, dst, eid = g.in_edges(1, form='all')
    src, dst, eid = g.out_edges(0, form='all')
    src, dst = g.edges()
    assert g.in_degree(0) == 0
    assert g.in_degree(1) == 1
    assert g.out_degree(0) == 1
    assert g.out_degree(1) == 0
def tree1(idtype):
    """Generate a tree
         0
        / \
       1   2
      / \
     3   4
    Edges are from leaves to root.
    """
    g = dgl.graph(([], [])).astype(idtype).to(F.ctx())
    g.add_nodes(5)
    g.add_edge(3, 1)
    g.add_edge(4, 1)
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.ndata['h'] = F.tensor([0, 1, 2, 3, 4])
    g.edata['h'] = F.randn((4, 10))
    return g
Exemple #23
0
def test_dense_sage_conv(g):
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
    dense_sage.fc.bias.data = sage.fc_neigh.bias.data
    if len(g.ntypes) == 2:
        feat = (F.randn(
            (g.number_of_src_nodes(), 5)), F.randn(
                (g.number_of_dst_nodes(), 5)))
    else:
        feat = F.randn((g.number_of_nodes(), 5))
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage), g
Exemple #24
0
def test_nn_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
    feat = F.randn((100, 5))
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
    feat = F.randn((100, 5))
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(50, 100, density=0.1))
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
    feat = F.randn((50, 5))
    feat_dst = F.randn((100, 2))
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = th.unique(g.edges()[1])
    block = dgl.to_block(g, seed_nodes)
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
    feat = F.randn((block.number_of_src_nodes(), 5))
    efeat = F.randn((block.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(block, feat, efeat)
    assert h.shape[0] == block.number_of_dst_nodes()
    assert h.shape[-1] == 10
Exemple #25
0
def test_weighted_reduce_readout(g, idtype, reducer):
    g = g.astype(idtype).to(F.ctx())
    g.ndata['h'] = F.randn((g.number_of_nodes(), 3))
    g.ndata['w'] = F.randn((g.number_of_nodes(), 1))
    g.edata['h'] = F.randn((g.number_of_edges(), 2))
    g.edata['w'] = F.randn((g.number_of_edges(), 1))

    # Test.1: node readout
    x = dgl.readout_nodes(g, 'h', 'w', op=reducer)
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = dgl.readout_nodes(sg, 'h', 'w', op=reducer)
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    x = getattr(dgl, '{}_nodes'.format(reducer))(g, 'h', 'w')
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = getattr(dgl, '{}_nodes'.format(reducer))(sg, 'h', 'w')
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    # Test.2: edge readout
    x = dgl.readout_edges(g, 'h', 'w', op=reducer)
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = dgl.readout_edges(sg, 'h', 'w', op=reducer)
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    x = getattr(dgl, '{}_edges'.format(reducer))(g, 'h', 'w')
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = getattr(dgl, '{}_edges'.format(reducer))(sg, 'h', 'w')
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))
Exemple #26
0
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200

    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].numpy())
    block = dgl.to_block(g, seed_nodes)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = sage(block, feat)
    assert h.shape[0] == block.number_of_dst_nodes()
    assert h.shape[-1] == 10

    # Test the case for graphs without edges
    g = dgl.bipartite([], num_nodes=(5, 3))
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3
Exemple #27
0
def test_prop_edges_dfs(idtype):
    g = dgl.graph(nx.path_graph(5), idtype=idtype, device=F.ctx())
    g.ndata['x'] = F.ones((5, 2))
    dgl.prop_edges_dfs(g, 0, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
    # snr using dfs results in a cumsum
    assert F.allclose(g.ndata['x'],
            F.tensor([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]]))

    g.ndata['x'] = F.ones((5, 2))
    dgl.prop_edges_dfs(g, 0, has_reverse_edge=True, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
    # result is cumsum[i] + cumsum[i-1]
    assert F.allclose(g.ndata['x'],
            F.tensor([[1., 1.], [3., 3.], [5., 5.], [7., 7.], [9., 9.]]))

    g.ndata['x'] = F.ones((5, 2))
    dgl.prop_edges_dfs(g, 0, has_nontree_edge=True, message_func=mfunc, reduce_func=rfunc, apply_node_func=None)
    # result is cumsum[i] + cumsum[i+1]
    assert F.allclose(g.ndata['x'],
            F.tensor([[3., 3.], [5., 5.], [7., 7.], [9., 9.], [5., 5.]]))
Exemple #28
0
def test_broadcast(idtype, g):
    g = g.astype(idtype).to(F.ctx())
    gfeat = F.randn((g.batch_size, 3))

    # Test.0: broadcast_nodes
    g.ndata['h'] = dgl.broadcast_nodes(g, gfeat)
    subg = dgl.unbatch(g)
    for i, sg in enumerate(subg):
        assert F.allclose(
            sg.ndata['h'],
            F.repeat(F.reshape(gfeat[i], (1, 3)), sg.number_of_nodes(), dim=0))

    # Test.1: broadcast_edges
    g.edata['h'] = dgl.broadcast_edges(g, gfeat)
    subg = dgl.unbatch(g)
    for i, sg in enumerate(subg):
        assert F.allclose(
            sg.edata['h'],
            F.repeat(F.reshape(gfeat[i], (1, 3)), sg.number_of_edges(), dim=0))
Exemple #29
0
def test_sage_conv():
    for aggre_type in ['mean', 'pool', 'gcn', 'lstm']:
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1),
                         readonly=True)
        sage = nn.SAGEConv(5, 10, aggre_type)
        feat = F.randn((100, 5))
        sage = sage.to(ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 10

        g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
        dst_dim = 5 if aggre_type != 'gcn' else 10
        sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
        feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
        sage = sage.to(ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 200
Exemple #30
0
def test_dense_sage_conv(g):
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(sage.fc_neigh.bias.data())
    if len(g.ntypes) == 2:
        feat = (F.randn(
            (g.number_of_src_nodes(), 5)), F.randn(
                (g.number_of_dst_nodes(), 5)))
    else:
        feat = F.randn((g.number_of_nodes(), 5))

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)