# for tsi object tsi_object[view] = TSIUtil.TSI(M[view]) # for 3 frame difference prev_epi = [None, None] prev_tsi = [None, None] for i in range(2): img_color = img = next(fi[view]) prev_imgs_color[view] = img img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dst = cv2.warpPerspective(img, M[view], (1000, 300)) prev_epi[i] = epi_object[view].apply(dst) prev_tsi[i] = tsi_object[view].apply(dst) fdiff_epi[view] = FrameDifference(*prev_epi) fdiff_tsi[view] = FrameDifference(*prev_tsi) mask_path = '../../data/gt/2016-ITS-BrnoCompSpeed/dataset/session{}_{}/video_mask.png'.format( ses_id, view) masks[view] = cv2.imread(mask_path, 0) """ ------------------------------------------------------------------------------- Main Program ------------------------------------------------------------------------------- """ ctr = 0 while True: ctr += 1 intersection = None
# for 3 frame difference prev_dst = [None, None] prev_view = [None, None] for i in range(2): img = next(fi[view]) prev_imgs_color[view] = img img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dst = cv2.warpPerspective(img, M[view], (1000, 300)) prev_dst[i] = dst prev_view[i] = img # bm_dst[view] = BackgroundModel (iter (prev_dst), detectShadows=False) # bm_dst[view].learn (tot_frame_init=2) fdiff_dst[view] = FrameDifference(*prev_dst) fdiff_view[view] = FrameDifference(*prev_view) mask_path = '../../data/gt/2016-ITS-BrnoCompSpeed/dataset/session{}_{}/video_mask.png'.format( ses_id, view) masks[view] = cv2.imread(mask_path, 0) """ ------------------------------------------------------------------------------- Main Program ------------------------------------------------------------------------------- """ ctr = 0 while True: ctr += 1 intersection = None
# get rectangular homography mapping corner_gt = np.float32(corner) corner_wrap = np.float32([[0, 300], [0, 0], [1000, 0], [1000, 300]]) M[view] = cv2.getPerspectiveTransform(corner_gt, corner_wrap) # for 3 frame difference prev_img = [None, None] for i in range(2): img = next(fi[view]) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # save background prev_img[i] = img fdiff_view[view] = FrameDifference(*prev_img) mask_path = '../../data/gt/2016-ITS-BrnoCompSpeed/dataset/session{}_{}/video_mask.png'.format( ses_id, view) masks[view] = cv2.imread(mask_path, 0) ss = list(prev_img[0].shape) ss.append(int(3)) ss = tuple(ss) print(ss) print(type(prev_img[0].shape)) fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter('video.avi', fourcc, 25.0, prev_img[0].shape) """ -------------------------------------------------------------------------------
logger.info("-- Generate prev_epi and tsi") for i in range(2): img_color = img = next(fi[view]) prev_imgs_color[view] = img img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dst = cv2.warpPerspective(img, M[view], (1000, 300)) for j in range(tot_epi): prev_epi[j][i] = epi_object[view][j].apply(dst) prev_tsi[i] = tsi_object[view].apply(dst) logger.info("-- Initialize EPI FrameDifference") fdiff_epi[view] = [] for i in range(tot_epi): fdiff_epi[view].append(FrameDifference(*prev_epi[i])) logger.info("-- Initialize TSI FrameDifference") fdiff_tsi[view] = FrameDifference(*prev_tsi) mask_path = '../../data/gt/2016-ITS-BrnoCompSpeed/dataset/session{}_{}/video_mask.png'.format( ses_id, view) masks[view] = cv2.imread(mask_path, 0) flag_prev_object = False list_height = [] logger.info("Done initializing") logger.info("Start counting") """ -------------------------------------------------------------------------------
else: tsi_multi = np.hstack((tsi_multi, strip)) cv2.line(new_dst, (j * tsi_const['xrange'], 0), (j * tsi_const['xrange'], 300), color=(255, 255, 0), thickness=3) # prev_tsi[i] = tsi_object[view].apply (dst) prev_view[i] = dst prev_tsi_multi[i] = tsi_multi logger.info("-- Initialize TSI FrameDifference") # fdiff_tsi[view] = FrameDifference (*prev_tsi) # fdiff_view[view] = BackgroundModel (iter (prev_view), detectShadows=False) # fdiff_view[view].learn (tot_frame_init=2) fdiff_view[view] = FrameDifference(*prev_view) # fdiff_tsi_multi[view] = BackgroundModel (iter (prev_tsi_multi), detectShadows=False) # fdiff_tsi_multi[view].learn (tot_frame_init=2) fdiff_tsi_multi[view] = FrameDifference(*prev_tsi_multi) mask_path = '../../data/gt/2016-ITS-BrnoCompSpeed/dataset/session{}_{}/video_mask.png'.format( ses_id, view) masks[view] = cv2.imread(mask_path, 0) # flag_prev_object = False # list_height = [] # logger.info ("Creating tsi_multi") logger.info("Done initializing") logger.info("Start counting")