Exemple #1
0
def static_clutter_algo(data):
    # data: numpy array file. Outputs the uncluttered data and backgrounds in the form of an array of numpy arrays
    # each representing one frame

    M, LS, L, S, width, height = bs_godec(data[0:2])
    first_background = S[:, 0].reshape(width, height).T
    first_uncluttered = L[:, 1].reshape(width, height).T
    background = first_background

    # xxXX__set initialisation parameters here__XXxx
    m = len(data)
    result = []
    backgrounds = []

    for i in range(len(data)):

        if i == 2:
            background = generate_background_est(m, background,
                                                 first_uncluttered, 0.2)
        elif i > 2:
            background = generate_background_est(m, backgrounds[i - 2],
                                                 result[i - 1], 0.2)

        backgrounds.append(background)
        r = get_frame_GREY(data[i]) - background
        result.append(r)

    return result, backgrounds
Exemple #2
0
def test_frame_filter_for_movement_detection(with_godec=False, savegif=False):
    noise_remover = FrameKalmanFilter()
    save_path = kalman_pics_path + basename(data_path)
    create_folder_if_absent(save_path)
    data_i = get_frame_GREY(data[0])
    subplt_titles = ["Original Image", "Movement", "KF Original"]
    if with_godec:
        subplt_titles.extend(["With Godec", "Movement", "KF Godec"])
        ims = init_comparison_plot(data_i, subplt_titles, 2, 3)
        M, LS, L, S, width, height = bs_godec(data)
        noise_remover2 = FrameKalmanFilter()
    elif not with_godec:
        ims = init_comparison_plot(data_i, subplt_titles, 1, 3)
        
    for i in tqdm(range(len(data))):
        data_i = get_frame_GREY(data[i])
        processed = noise_remover.process_frame(data_i)
        movement = normalize_frame(processed - data_i)
        imgs = [data_i, movement, processed]
        if with_godec:
            L_frame = normalize_frame(L[:, i].reshape(width, height).T)
            S_frame = normalize_frame(S[:, i].reshape(width, height).T)
            data_i2 = cleaned_godec_img(L_frame, S_frame)
            processed2 = noise_remover2.process_frame(data_i2)
            movement2 = normalize_frame(processed2 - data_i2)
            imgs.extend([data_i2, movement2, processed2])
            
        update_comparison_plot(ims, imgs)
        plt.savefig(save_path + "/{}.png".format(i)) #make png
    if savegif:
        gif_pics = [save_path+ "/{}.png".format(i) for i in range(len(data))]
        gif_path = kalman_gifs_path+basename(data_path)+"_movement.gif"
        write_gif(gif_pics, gif_path, 0, len(gif_pics), fps=20)
        optimize_size(gif_path)
def displacement_history(files, start_time, end_time):
    """
    Primary function for getting history of the following format:   
    {
        start: "20200714_081300",
        end: "20200714_084300",
        numFrames: 1800,
        frames: [x1, ..., x1800]
    }

    where xi is the displacement from xi-1 to xi frame
    Instead of geting centroid area number for each centroid, 
    calculate displacement directly.
    
    Args:
        files ([np.array]): [description]
        debug (bool, optional): [description]. Defaults to True.

    Returns:
        [type]: [description]
    """
    annotated_images = []
    centroid_history = []
    M, LS, L, S, width, height = bs_godec(files)
    for i in range(len(files)):
        img = normalize_frame(files[i])
        L_frame = normalize_frame(L[:, i].reshape(width, height).T)
        S_frame = normalize_frame(S[:, i].reshape(width, height).T)
        img = cleaned_godec_img(L_frame, S_frame, files[i])
        images, centroids = postprocess_img(img)

        annotated_img = images[-1]
        annotated_images.append(annotated_img)

        append_centroid_history(centroids, i, centroid_history)
    interpolated_centroid_history = Interpolator(centroid_history).history
    displacements = []
    numFrames = len(interpolated_centroid_history)
    for i in range(numFrames - 1):
        prev_centroid = interpolated_centroid_history[i + 1]
        curr_centroid = interpolated_centroid_history[i]
        if not (prev_centroid == None or curr_centroid == None):
            curr_displacement = np.sqrt(
                (prev_centroid[0] - curr_centroid[0])**2 +
                (prev_centroid[1] - curr_centroid[1])**2)
            displacements.append(curr_displacement)

    timeElapsed = datetime.strptime(end_time,
                                    "%Y.%m.%d_%H%M%S") - datetime.strptime(
                                        start_time, "%Y.%m.%d_%H%M%S")
    print(timeElapsed.total_seconds())
    return {
        "start": start_time,
        "end": end_time,
        "timeElapsedInSeconds": timeElapsed.total_seconds(),
        "numFrames": numFrames,
        "frames": displacements,
    }
def optical_flow_dense(files):
    # Perform Godec first on all frames
    M, LS, L, S, width, height = bs_godec(files)
    first_frame = get_frame(files[0])

    # frames to be compared is after godec and postprocessing
    godec_frame, probability = get_godec_frame(M, L, S, width, height, 0)
    img, centroids = postprocess_img(godec_frame, all_images=False)
    prev_gray = img
    ims = init_comparison_plot(first_frame,
                               ["Original", "Thresholded", "FlowS"], 1, 3)
    test = cv.cvtColor(first_frame.astype("uint8"), cv.COLOR_GRAY2BGR)
    hsv_mask = np.zeros_like(test)
    hsv_mask[..., 1] = 255
    window_name = "Dense Optical Flow"

    counter = 1

    while counter < len(files):
        print(counter)
        godec_frame, probability = get_godec_frame(M, L, S, width, height,
                                                   counter)
        img, centroids = postprocess_img(godec_frame, all_images=False)
        next_gray = img
        flow = cv.calcOpticalFlowFarneback(prev_gray,
                                           next_gray,
                                           None,
                                           pyr_scale=0.5,
                                           levels=5,
                                           winsize=11,
                                           iterations=5,
                                           poly_n=5,
                                           poly_sigma=1.1,
                                           flags=0)
        magnitude, angle = cv.cartToPolar(flow[..., 0], flow[..., 1])
        hsv_mask[
            ...,
            0] = angle * 180 / np.pi / 2  # Set image hue according to the optical flow direction
        hsv_mask[..., 2] = cv.normalize(
            magnitude, None, 0, 255, cv.NORM_MINMAX
        )  # Set image value according to the optical flow magnitude (normalized)

        # plotting of grayscale flowmap and data heatmap
        update_comparison_plot(
            ims, [get_frame(files[counter]), next_gray, hsv_mask])
        plt.title("Max Magnitude :" + str(np.amax(magnitude)) +
                  "\nMax Angle:" + str(np.amax(angle)))
        create_folder_if_absent("optical_flow_pics")
        plt.savefig("optical_flow_pics/{}.png".format(counter))
        prev_gray = next_gray
        k = cv.waitKey(30) & 0xff
        counter += 1
Exemple #5
0
def test_godec_over_multiple_iterations(frames_per_iterations=30):
    ims = init_comparison_plot(get_frame_GREY(files[0]),
                               subplt_titles=[
                                   "Original", "L_frame", "S_Frame",
                                   "Cleaned_Frame", "L_fram_%", "S_frame_%"
                               ],
                               num_rows=2,
                               num_columns=3)
    for j in range(0, len(files), frames_per_iterations):
        if j + frames_per_iterations < len(files):
            end_index = j + frames_per_iterations
        else:
            end_index = len(files)
        M, LS, L, S, width, height = bs_godec(files[j:end_index],
                                              normalize=False)

        for i in range(i, end_index):
            img = get_frame_GREY(files[i])
            L_frame = normalize_frame(L[:, i].reshape(width, height).T)
            S_frame = normalize_frame(S[:, i].reshape(width, height).T)
            L_probability = foreground_probability(
                L[:, i].reshape(width, height).T, get_frame(files[i]))
            S_probability = foreground_probability(
                S[:, i].reshape(width, height).T, get_frame(files[i]))
            print("L_probability")
            print(L_probability)
            print("S_probability")
            print(S_probability)
            cleaned_frame, prob = cleaned_godec_img(L_frame, S_frame,
                                                    get_frame(files[i]))
            update_comparison_plot(ims, [
                img, L_frame, S_frame, cleaned_frame,
                normalize_frame(L_probability),
                normalize_frame(S_probability)
            ])
            create_folder_if_absent("testpics")
            plt.savefig("testpics/" + "{}.png".format(i))
Exemple #6
0
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np

from background_subtraction import bs_godec
from file_utils import (basename, create_folder_if_absent, get_all_files,
                        get_frame, get_frame_GREY, normalize_frame)
from foreground_probability import (foreground_probability,
                                    probability_from_residue, residual_squares)
from visualizer import (init_comparison_plot, update_comparison_plot,
                        write_gif_from_pics)

data_path = "data/teck_calib"
data = get_all_files(data_path)
M, LS, L, S, width, height = bs_godec(
    data, normalize=False)  # get that godec data mmmm


def test_foreground_probability(savegif=False):

    subplt_titles = ["Original", "Foreground %"]
    ims = init_comparison_plot(get_frame_GREY(data[0]),
                               subplt_titles,
                               1,
                               2,
                               title="Probabilistic Foreground Detection")

    for i in range(len(data)):
        frame = get_frame(data[i])
        L_frame = L[:, i].reshape(width, height).T
        S_frame = S[:, i].reshape(width, height).T
Exemple #7
0
def test_bs_godec(files,
                  save_data=False,
                  save_gif=False,
                  gif_name=None,
                  fps=60):
    """Test bs_godec Implementation

    Keyword Arguments:
        save_data {bool} -- (default: {False})
        save_gif {bool} -- (default: {False})
        gif_name {string} -- (default: {None})
        fps {int} -- (default: {60})
    ---
    This test shows you different ways of running the bs_godec method and obtain the various type of data you need.
    """
    print("Testing Godec...")
    t = Timer("accumulate")
    t.start()
    M, LS, L, S, width, height = bs_godec(files)
    print("M: ")
    print(M)
    print("L: ")
    print(L)
    t.stop("Time taken to run background subtraction with godec: ")

    if save_data:
        t.start()

        npy_path = "godec_data/" + basename(data_path)
        create_folder_if_absent(godec_data_path)
        save_npy(M, npy_path, "M")
        save_npy(L, npy_path, "L")
        save_npy(S, npy_path, "S")
        save_npy(LS, npy_path, "LS")

        t.stop("Time taken to save godec result npy arrays: ")

    plots_path = godec_pics_path + basename(data_path)
    if not save_gif:
        print("Plotting....")
        t.start()

        plot_godec(M,
                   LS,
                   L,
                   S,
                   plots_path,
                   width=width,
                   height=height,
                   preview=True)

        t.stop("Time taken to save godec plots: ")
    elif save_gif and gif_name:
        print("Saving gif as {}....".format(gif_name))
        t.start()

        plot_godec(M, LS, L, S, plots_path, width=width, height=height)
        pics = get_all_files(plots_path)

        t.stop("Time taken to save godec plots: ")
        write_gif(pics,
                  godec_gifs_path + gif_name,
                  start=0,
                  end=len(pics),
                  fps=fps)

    print("The entire process has taken: ", t.timers['accumulate'], " seconds")
def get_centroid_area_history(files, debug=True, key_format="simple"):
    """
    Primary function to be called for obtaining history in the following format:
    {
        0: {
            0: ...,
            1: ...,
        },
        1: { ... }
    }
    Arguments:
        files {[str]} -- up to 30 mins of files, since we decided that recalibration of godec should be done every 30 mins
    """
    annotated_images = []
    centroid_history = []
    M, LS, L, S, width, height = bs_godec(files)

    for i in range(len(files)):
        img = get_frame_GREY(files[i])
        L_frame = normalize_frame(L[:, i].reshape(width, height).T)
        S_frame = normalize_frame(S[:, i].reshape(width, height).T)
        img = cleaned_godec_img(L_frame, S_frame, get_frame(files[i]))
        images, centroids = postprocess_img(img)

        annotated_img = images[-1]
        annotated_images.append(annotated_img)

        append_centroid_history(centroids, i, centroid_history)

    interpolated_centroid_history = Interpolator(centroid_history).history
    centroid_area_array = [
        get_centroid_area_number(cnt) for cnt in interpolated_centroid_history
    ]
    area_counter = Counter(centroid_area_array)

    for i in range(8):
        if i not in area_counter:
            area_counter[i] = 0

    if key_format == "simple":
        area_movement_counter = Counter()

        for i in range(len(centroid_area_array) - 1):
            from_area = str(centroid_area_array[i])
            to_area = str(centroid_area_array[i + 1])
            label = from_area + "→" + to_area
            area_movement_counter[label] += 1

    elif key_format == "from_to":
        area_movement_counter = {"None": Counter()}
        for i in range(8):
            area_movement_counter[str(i)] = Counter()

        for i in range(len(centroid_area_array) - 1):
            from_area = str(centroid_area_array[i])
            to_area = str(centroid_area_array[i + 1])
            area_movement_counter[from_area][to_area] += 1

    if debug:
        return area_counter, area_movement_counter, centroid_area_array, annotated_images
    return area_movement_counter