def kflr(self): with backpack(new_ext.KFLR()): _, _, loss = self.problem.forward_pass() loss.backward() kflr = [p.kflr for p in self.problem.model.parameters()] return kflr
def test_interface_kflr(): interface_test(new_ext.KFLR())
def test_interface_kflr_conv(): interface_test(new_ext.KFLR(), use_conv=True)
# %% # We can now evaluate the loss and do a backward pass with Backpack # ----------------------------------------------------------------- loss = lossfunc(model(X), y) with backpack( extensions.BatchGrad(), extensions.Variance(), extensions.SumGradSquared(), extensions.BatchL2Grad(), extensions.DiagGGNMC(mc_samples=1), extensions.DiagGGNExact(), extensions.DiagHessian(), extensions.KFAC(mc_samples=1), extensions.KFLR(), extensions.KFRA(), ): loss.backward() # %% # And here are the results # ----------------------------------------------------------------- for name, param in model.named_parameters(): print(name) print(".grad.shape: ", param.grad.shape) print(".grad_batch.shape: ", param.grad_batch.shape) print(".variance.shape: ", param.variance.shape) print(".sum_grad_squared.shape: ", param.sum_grad_squared.shape) print(".batch_l2.shape: ", param.batch_l2.shape)
""" Compute the gradient with PyTorch and the KFLR approximation with BackPACK. """ from torch.nn import CrossEntropyLoss, Flatten, Linear, Sequential from backpack import backpack, extend, extensions from backpack.utils.examples import load_mnist_data B = 4 X, y = load_mnist_data(B) print("# Gradient with PyTorch, KFLR approximation with BackPACK | B =", B) model = Sequential(Flatten(), Linear(784, 10),) lossfunc = CrossEntropyLoss() model = extend(model) lossfunc = extend(lossfunc) loss = lossfunc(model(X), y) with backpack(extensions.KFLR()): loss.backward() for name, param in model.named_parameters(): print(name) print(".grad.shape: ", param.grad.shape) print(".kflr (shapes): ", [kflr.shape for kflr in param.kflr])
def kflr(self) -> List[List[Tensor]]: # noqa:D102 with backpack(new_ext.KFLR()): _, _, loss = self.problem.forward_pass() loss.backward() return self.problem.collect_data("kflr")