def splitTTjetFlavours(cfg, tree, noSel):
    subProc = cfg["subprocess"]
    if subProc == "ttbb":
        noSel = noSel.refine(subProc, cut=(tree.genTtbarId % 100) >= 52)
    elif subProc == "ttbj":
        noSel = noSel.refine(subProc, cut=(tree.genTtbarId % 100) == 51)
    elif subProc == "ttcc":
        noSel = noSel.refine(subProc,
                             cut=op.in_range(40, tree.genTtbarId % 100, 46))
    elif subProc == "ttjj":
        noSel = noSel.refine(subProc, cut=(tree.genTtbarId % 100) < 41)
    return noSel
Exemple #2
0
    def definePlots(self, tree, noSel, sample=None, sampleCfg=None):
        from bamboo.plots import Plot, SummedPlot
        from bamboo.plots import EquidistantBinning as EqBin
        from bamboo import treefunctions as op
        plots = []
        metSel = noSel.refine("MET", cut=(tree.met.et > 30000))
        trigSel = metSel.refine("trig", cut=op.OR(tree.trigE, tree.trigM))
        goodLeptons = op.select(
            tree.lep, lambda l: op.AND(l.isTightID, l.pt > 35000., l.ptcone30 /
                                       l.pt < 0.1, l.etcone20 / l.pt < 0.1))
        oneLepSel = trigSel.refine("1goodlep",
                                   cut=(op.rng_len(goodLeptons) == 1))
        lep = goodLeptons[0]
        signalSel = oneLepSel.refine(
            "signalRegion",
            cut=op.AND(
                op.abs(lep.z0 * op.sin(lep.p4.theta())) < 0.5,
                op.multiSwitch(
                    (lep.type == 11,
                     op.AND(
                         op.abs(lep.eta) < 2.46,
                         op.NOT(op.in_range(1.37, op.abs(lep.eta), 1.52)),
                         op.abs(lep.trackd0pvunbiased /
                                lep.tracksigd0pvunbiased) < 5)),
                    (lep.type == 13,
                     op.AND(
                         op.abs(lep.eta) < 2.5,
                         op.abs(lep.trackd0pvunbiased /
                                lep.tracksigd0pvunbiased) < 3)),
                    op.c_bool(False))))
        metp4 = makePtEtaPhiEP4(tree.met.et, op.c_float(0.), tree.met.phi,
                                tree.met.et)
        plots.append(
            Plot.make1D("mt_w", (lep.p4 + metp4).Mt() / 1000.,
                        signalSel,
                        EqBin(40, 60., 180.),
                        title="m_{T}^{W#rightarrow l#nu} (GeV)",
                        plotopts={"log-y-axis-range": [25., 2.5e8]}))

        return plots
Exemple #3
0
    def definePlots(self, tree, noSel, sample=None, sampleCfg=None):
        from bamboo.plots import Plot
        from bamboo.plots import EquidistantBinning as EqBin
        from bamboo import treefunctions as op

        plots = []

        dimu_Z = op.combine(
            tree.Muon,
            N=2,
            pred=(lambda mu1, mu2: op.AND(
                mu1.charge != mu2.charge,
                op.in_range(60., op.invariant_mass(mu1.p4, mu2.p4), 120.))))
        hasDiMuZ = noSel.refine("hasDiMuZ", cut=(op.rng_len(dimu_Z) > 0))
        plots.append(
            Plot.make1D("dimuZ_MET",
                        tree.MET.pt,
                        hasDiMuZ,
                        EqBin(100, 0., 2000.),
                        title="MET (GeV)"))

        return plots
    def definePlots(self, t, noSel, sample=None, sampleCfg=None):
        # Some imports #
        from bamboo.analysisutils import forceDefine

        era = sampleCfg['era']
        # Get pile-up configs #
        puWeightsFile = None
        if era == "2016":
            sfTag = "94X"
            puWeightsFile = os.path.join(os.path.dirname(__file__), "data",
                                         "puweights2016.json")
        elif era == "2017":
            sfTag = "94X"
            puWeightsFile = os.path.join(os.path.dirname(__file__), "data",
                                         "puweights2017.json")
        elif era == "2018":
            sfTag = "102X"
            puWeightsFile = os.path.join(os.path.dirname(__file__), "data",
                                         "puweights2018.json")
        if self.isMC(sample) and puWeightsFile is not None:
            from bamboo.analysisutils import makePileupWeight
            noSel = noSel.refine("puWeight",
                                 weight=makePileupWeight(puWeightsFile,
                                                         t.Pileup_nTrueInt,
                                                         systName="pileup"))
        isMC = self.isMC(sample)
        plots = []

        forceDefine(t._Muon.calcProd, noSel)

        #############################################################################
        ################################  Muons #####################################
        #############################################################################
        # Wp // 2016- 2017 -2018 : Muon_mediumId   // https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideMuonIdRun2#Muon_Isolation
        muonsByPt = op.sort(t.Muon, lambda mu: -mu.p4.Pt())
        muons = op.select(
            muonsByPt, lambda mu: op.AND(mu.p4.Pt() > 10.,
                                         op.abs(mu.p4.Eta()) < 2.4, mu.tightId,
                                         mu.pfRelIso04_all < 0.15))

        # Scalefactors #
        #if era=="2016":
        #    doubleMuTrigSF = get_scalefactor("dilepton", ("doubleMuLeg_HHMoriond17_2016"), systName="mumutrig")
        #    muMediumIDSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "id_medium"), combine="weight", systName="muid")
        #    muMediumISOSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "iso_tight_id_medium"), combine="weight", systName="muiso")
        #    TrkIDSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "highpt"), combine="weight")
        #    TrkISOSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "isotrk_loose_idtrk_tightidandipcut"), combine="weight")
        #else:
        #    muMediumIDSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "id_medium"), systName="muid")
        #    muMediumISOSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "iso_tight_id_medium"), systName="muiso")

        #############################################################################
        #############################  Electrons  ###################################
        #############################################################################
        #Wp  // 2016: Electron_cutBased_Sum16==3  -> medium     // 2017 -2018  : Electron_cutBased ==3   --> medium ( Fall17_V2)
        # asking for electrons to be in the Barrel region with dz<1mm & dxy< 0.5mm   //   Endcap region dz<2mm & dxy< 0.5mm
        electronsByPt = op.sort(t.Electron, lambda ele: -ele.p4.Pt())
        electrons = op.select(
            electronsByPt,
            lambda ele: op.AND(ele.p4.Pt() > 15.,
                               op.abs(ele.p4.Eta()) < 2.5, ele.cutBased >= 3)
        )  # //cut-based ID Fall17 V2 the recomended one from POG for the FullRunII

        # Scalefactors #
        #elMediumIDSF = get_scalefactor("lepton", ("electron_{0}_{1}".format(era,sfTag), "id_medium"), systName="elid")
        #doubleEleTrigSF = get_scalefactor("dilepton", ("doubleEleLeg_HHMoriond17_2016"), systName="eleltrig")

        #elemuTrigSF = get_scalefactor("dilepton", ("elemuLeg_HHMoriond17_2016"), systName="elmutrig")
        #mueleTrigSF = get_scalefactor("dilepton", ("mueleLeg_HHMoriond17_2016"), systName="mueltrig")

        OsElEl = op.combine(
            electrons,
            N=2,
            pred=lambda el1, el2: op.AND(el1.charge != el2.charge,
                                         el1.p4.Pt() > 25,
                                         el2.p4.Pt() > 15))
        OsMuMu = op.combine(
            muons,
            N=2,
            pred=lambda mu1, mu2: op.AND(mu1.charge != mu2.charge,
                                         mu1.p4.Pt() > 25,
                                         mu2.p4.Pt() > 15))
        OsElMu = op.combine((electrons, muons),
                            pred=lambda el, mu: op.AND(el.charge != mu.charge,
                                                       el.p4.Pt() > 25,
                                                       mu.p4.Pt() > 15))
        OsMuEl = op.combine((electrons, muons),
                            pred=lambda el, mu: op.AND(el.charge != mu.charge,
                                                       el.p4.Pt() > 15,
                                                       mu.p4.Pt() > 25))

        hasOsElEl = noSel.refine("hasOsElEl", cut=[op.rng_len(OsElEl) >= 1])
        hasOsMuMu = noSel.refine("hasOsMuMu", cut=[op.rng_len(OsMuMu) >= 1])
        hasOsElMu = noSel.refine("hasOsElMu", cut=[op.rng_len(OsElMu) >= 1])
        hasOsMuEl = noSel.refine("hasOsMuEl", cut=[op.rng_len(OsMuEl) >= 1])

        plots.append(
            Plot.make1D("ElEl_channel",
                        op.rng_len(OsElEl),
                        noSel,
                        EquidistantBinning(10, 0, 10.),
                        title='Number of dilepton events in ElEl channel',
                        xTitle='N_{dilepton} (ElEl channel)'))
        plots.append(
            Plot.make1D("MuMu_channel",
                        op.rng_len(OsMuMu),
                        noSel,
                        EquidistantBinning(10, 0, 10.),
                        title='Number of dilepton events in MuMu channel',
                        xTitle='N_{dilepton} (MuMu channel)'))
        plots.append(
            Plot.make1D("ElMu_channel",
                        op.rng_len(OsElMu),
                        noSel,
                        EquidistantBinning(10, 0, 10.),
                        title='Number of dilepton events in ElMu channel',
                        xTitle='N_{dilepton} (ElMu channel)'))
        plots.append(
            Plot.make1D("MuEl_channel",
                        op.rng_len(OsMuEl),
                        noSel,
                        EquidistantBinning(10, 0, 10.),
                        title='Number of dilepton events in MuEl channel',
                        xTitle='N_{dilepton} (MuEl channel)'))

        plots += makeDileptonPlots(self,
                                   sel=hasOsElEl,
                                   dilepton=OsElEl[0],
                                   suffix='hasOsdilep',
                                   channel='ElEl')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuMu,
                                   dilepton=OsMuMu[0],
                                   suffix='hasOsdilep',
                                   channel='MuMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsElMu,
                                   dilepton=OsElMu[0],
                                   suffix='hasOsdilep',
                                   channel='ElMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuEl,
                                   dilepton=OsMuEl[0],
                                   suffix='hasOsdilep',
                                   channel='MuEl')

        # Dilepton Z peak exclusion (charge already done in previous selection) #
        lambda_mllLowerband = lambda dilep: op.in_range(
            12., op.invariant_mass(dilep[0].p4, dilep[1].p4), 80.)
        lambda_mllUpperband = lambda dilep: op.invariant_mass(
            dilep[0].p4, dilep[1].p4) > 100.
        lambda_mllCut = lambda dilep: op.OR(lambda_mllLowerband(dilep),
                                            lambda_mllUpperband(dilep))

        hasOsElElOutZ = hasOsElEl.refine("hasOsElElOutZ",
                                         cut=[lambda_mllCut(OsElEl[0])])
        hasOsMuMuOutZ = hasOsMuMu.refine("hasOsMuMuOutZ",
                                         cut=[lambda_mllCut(OsMuMu[0])])
        hasOsElMuOutZ = hasOsElMu.refine("hasOsElMuOutZ",
                                         cut=[lambda_mllCut(OsElMu[0])])
        hasOsMuElOutZ = hasOsMuEl.refine("hasOsMuElOutZ",
                                         cut=[lambda_mllCut(OsMuEl[0])])

        plots += makeDileptonPlots(self,
                                   sel=hasOsElElOutZ,
                                   dilepton=OsElEl[0],
                                   suffix='hasOsdilep_OutZ',
                                   channel='ElEl')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuMuOutZ,
                                   dilepton=OsMuMu[0],
                                   suffix='hasOsdilep_OutZ',
                                   channel='MuMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsElMuOutZ,
                                   dilepton=OsElMu[0],
                                   suffix='hasOsdilep_OutZ',
                                   channel='ElMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuElOutZ,
                                   dilepton=OsMuEl[0],
                                   suffix='hasOsdilep_OutZ',
                                   channel='MuEl')

        #############################################################################
        ################################  Jets  #####################################
        #############################################################################
        # select jets   // 2016 - 2017 - 2018   ( j.jetId &2) ->      tight jet ID
        jetsByPt = op.sort(t.Jet, lambda jet: -jet.p4.Pt())
        jetsSel = op.select(jetsByPt,
                            lambda j: op.AND(j.p4.Pt() > 20.,
                                             op.abs(j.p4.Eta()) < 2.4,
                                             (j.jetId & 2)))  # Jets = AK4 jets
        fatjetsByPt = op.sort(t.FatJet, lambda fatjet: -fatjet.p4.Pt())
        fatjetsSel = op.select(
            fatjetsByPt, lambda j: op.AND(j.p4.Pt() > 20.,
                                          op.abs(j.p4.Eta()) < 2.4,
                                          (j.jetId & 2)))  # FatJets = AK8 jets
        # exclude from the jetsSel any jet that happens to include within its reconstruction cone a muon or an electron.
        jets = op.select(
            jetsSel, lambda j: op.AND(
                op.NOT(
                    op.rng_any(electrons, lambda ele: op.deltaR(j.p4, ele.p4) <
                               0.3)),
                op.NOT(
                    op.rng_any(muons, lambda mu: op.deltaR(j.p4, mu.p4) < 0.3))
            ))
        fatjets = op.select(
            fatjetsSel, lambda j: op.AND(
                op.NOT(
                    op.rng_any(electrons, lambda ele: op.deltaR(j.p4, ele.p4) <
                               0.3)),
                op.NOT(
                    op.rng_any(muons, lambda mu: op.deltaR(j.p4, mu.p4) < 0.3))
            ))
        # Boosted and resolved jets categories #
        if era == "2016":  # Must check that subJet exists before looking at the btag
            lambda_boosted = lambda fatjet: op.OR(
                op.AND(fatjet.subJet1._idx.result != -1, fatjet.subJet1.
                       btagDeepB > 0.6321),
                op.AND(fatjet.subJet2._idx.result != -1, fatjet.subJet2.
                       btagDeepB > 0.6321))
            lambda_resolved = lambda jet: jet.btagDeepB > 0.6321
        elif era == "2017":
            lambda_boosted = lambda fatjet: op.OR(
                op.AND(fatjet.subJet1._idx.result != -1, fatjet.subJet1.
                       btagDeepB > 0.4941),
                op.AND(fatjet.subJet2._idx.result != -1, fatjet.subJet2.
                       btagDeepB > 0.4941))
            lambda_resolved = lambda jet: jet.btagDeepB > 0.4941
        elif era == "2018":
            lambda_boosted = lambda fatjet: op.OR(
                op.AND(fatjet.subJet1._idx.result != -1, fatjet.subJet1.
                       btagDeepB > 0.4184),
                op.AND(fatjet.subJet2._idx.result != -1, fatjet.subJet2.
                       btagDeepB > 0.4184))
            lambda_resolved = lambda jet: jet.btagDeepB > 0.4184

        # Select the bjets we want #
        bjetsResolved = op.select(jets, lambda_resolved)
        bjetsBoosted = op.select(fatjets, lambda_boosted)

        # Define the boosted and Resolved (+exclusive) selections #
        hasBoostedJets = noSel.refine("hasBoostedJets",
                                      cut=[op.rng_len(bjetsBoosted) >= 1])
        hasNotBoostedJets = noSel.refine("hasNotBoostedJets",
                                         cut=[op.rng_len(bjetsBoosted) == 0])
        hasResolvedJets = noSel.refine(
            "hasResolvedJets",
            cut=[op.rng_len(jets) >= 2,
                 op.rng_len(bjetsResolved) >= 1])
        hasNotResolvedJets = noSel.refine(
            "hasNotResolvedJets",
            cut=[op.OR(op.rng_len(jets) <= 1,
                       op.rng_len(bjetsResolved) == 0)])
        hasBoostedAndResolvedJets = noSel.refine(
            "hasBoostedAndResolvedJets",
            cut=[
                op.rng_len(bjetsBoosted) >= 1,
                op.rng_len(jets) >= 2,
                op.rng_len(bjetsResolved) >= 1
            ])
        hasNotBoostedAndResolvedJets = noSel.refine(
            "hasNotBoostedAndResolvedJets",
            cut=[
                op.OR(
                    op.rng_len(bjetsBoosted) == 0,
                    op.rng_len(jets) <= 1,
                    op.rng_len(bjetsResolved) == 0)
            ])
        hasExlusiveResolvedJets = noSel.refine(
            "hasExlusiveResolved",
            cut=[
                op.rng_len(jets) >= 2,
                op.rng_len(bjetsResolved) >= 1,
                op.rng_len(bjetsBoosted) == 0
            ])
        hasNotExlusiveResolvedJets = noSel.refine(
            "hasNotExlusiveResolved",
            cut=[
                op.OR(
                    op.OR(
                        op.rng_len(jets) <= 1,
                        op.rng_len(bjetsResolved) == 0),
                    op.AND(
                        op.rng_len(bjetsBoosted) >= 1,
                        op.rng_len(jets) >= 2,
                        op.rng_len(bjetsResolved) >= 1))
            ])
        hasExlusiveBoostedJets = noSel.refine(
            "hasExlusiveBoostedJets",
            cut=[
                op.rng_len(bjetsBoosted) >= 1,
                op.OR(op.rng_len(jets) <= 1,
                      op.rng_len(bjetsResolved) == 0)
            ])
        hasNotExlusiveBoostedJets = noSel.refine(
            "hasNotExlusiveBoostedJets",
            cut=[
                op.OR(
                    op.rng_len(bjetsBoosted) == 0,
                    op.AND(
                        op.rng_len(jets) >= 2,
                        op.rng_len(bjetsResolved) >= 1))
            ])

        # Counting events from different selections for debugging #
        # Passing Boosted selection #
        PassedBoosted = Plot.make1D("PassedBoosted",
                                    op.c_int(1),
                                    hasBoostedJets,
                                    EquidistantBinning(2, 0., 2.),
                                    title='Passed Boosted',
                                    xTitle='Passed Boosted')
        FailedBoosted = Plot.make1D("FailedBoosted",
                                    op.c_int(0),
                                    hasNotBoostedJets,
                                    EquidistantBinning(2, 0., 2.),
                                    title='Failed Boosted',
                                    xTitle='Failed Boosted')
        plots.append(
            SummedPlot("BoostedCase", [FailedBoosted, PassedBoosted],
                       xTitle="Boosted selection"))

        # Passing Resolved selection #
        PassedResolved = Plot.make1D("PassedResolved",
                                     op.c_int(1),
                                     hasResolvedJets,
                                     EquidistantBinning(2, 0., 2.),
                                     title='Passed Resolved',
                                     xTitle='Passed Resolved')
        FailedResolved = Plot.make1D("FailedResolved",
                                     op.c_int(0),
                                     hasNotResolvedJets,
                                     EquidistantBinning(2, 0., 2.),
                                     title='Failed Resolved',
                                     xTitle='Failed Resolved')
        plots.append(
            SummedPlot("ResolvedCase", [FailedResolved, PassedResolved],
                       xTitle="Resolved selection"))

        # Passing Exclusive Resolved (Resolved AND NOT Boosted) #
        PassedExclusiveResolved = Plot.make1D(
            "PassedExclusiveResolved",
            op.c_int(1),
            hasExlusiveResolvedJets,
            EquidistantBinning(2, 0., 2.),
            title='Passed Exclusive Resolved',
            xTitle='Passed Exclusive Resolved')
        FailedExclusiveResolved = Plot.make1D(
            "FailedExclusiveResolved",
            op.c_int(0),
            hasNotExlusiveResolvedJets,
            EquidistantBinning(2, 0., 2.),
            title='Failed Exclusive Resolved',
            xTitle='Failed Exclusive Resolved')
        plots.append(
            SummedPlot("ExclusiveResolvedCase",
                       [FailedExclusiveResolved, PassedExclusiveResolved],
                       xTitle="Exclusive Resolved selection"))

        # Passing Exclusive Boosted (Boosted AND NOT Resolved) #
        PassedExclusiveBoosted = Plot.make1D("PassedExclusiveBoosted",
                                             op.c_int(1),
                                             hasExlusiveBoostedJets,
                                             EquidistantBinning(2, 0., 2.),
                                             title='Passed Exclusive Boosted',
                                             xTitle='Passed Exclusive Boosted')
        FailedExclusiveBoosted = Plot.make1D("FailedExclusiveBoosted",
                                             op.c_int(0),
                                             hasNotExlusiveBoostedJets,
                                             EquidistantBinning(2, 0., 2.),
                                             title='Failed Exclusive Boosted',
                                             xTitle='Failed Exclusive Boosted')
        plots.append(
            SummedPlot("ExclusiveBoostedCase",
                       [FailedExclusiveBoosted, PassedExclusiveBoosted],
                       xTitle="Exclusive Boosted selection"))

        # Passing Boosted AND Resolved #
        PassedBoth = Plot.make1D("PassedBoth",
                                 op.c_int(1),
                                 hasBoostedAndResolvedJets,
                                 EquidistantBinning(2, 0., 2.),
                                 title='Passed Both Boosted and Resolved',
                                 xTitle='Passed Boosted and Resolved')
        FailedBoth = Plot.make1D(
            "FailedBoth",  # Means failed the (Boosted AND Resolved) = either one or the other 
            op.c_int(0),
            hasNotBoostedAndResolvedJets,
            EquidistantBinning(2, 0., 2.),
            title='Failed combination Boosted and Resolved',
            xTitle='Failed combination')
        plots.append(
            SummedPlot("BoostedAndResolvedCase", [FailedBoth, PassedBoth],
                       xTitle="Boosted and Resolved selection"))

        # Count number of boosted and resolved jets #
        plots.append(
            Plot.make1D("NBoostedJets",
                        op.rng_len(bjetsBoosted),
                        hasBoostedJets,
                        EquidistantBinning(5, 0., 5.),
                        title='Number of boosted jets in boosted case',
                        xTitle='N boosted bjets'))
        plots.append(
            Plot.make1D(
                "NResolvedJets",
                op.rng_len(bjetsResolved),
                hasExlusiveResolvedJets,
                EquidistantBinning(5, 0., 5.),
                title='Number of resolved jets in exclusive resolved case',
                xTitle='N resolved bjets'))

        # Plot number of subjets in the boosted fatjets #
        lambda_noSubjet = lambda fatjet: op.AND(
            fatjet.subJet1._idx.result == -1,
            op.AND(fatjet.subJet2._idx.result == -1))
        lambda_oneSubjet = lambda fatjet: op.AND(
            fatjet.subJet1._idx.result != -1,
            op.AND(fatjet.subJet2._idx.result == -1))
        lambda_twoSubjet = lambda fatjet: op.AND(
            fatjet.subJet1._idx.result != -1,
            op.AND(fatjet.subJet2._idx.result != -1))

        hasNoSubjet = hasBoostedJets.refine(
            "hasNoSubjet", cut=[lambda_noSubjet(bjetsBoosted[0])])
        hasOneSubjet = hasBoostedJets.refine(
            "hasOneSubjet", cut=[lambda_oneSubjet(bjetsBoosted[0])])
        hasTwoSubjet = hasBoostedJets.refine(
            "hasTwoSubjet", cut=[lambda_twoSubjet(bjetsBoosted[0])])

        plot_hasNoSubjet = Plot.make1D(
            "plot_hasNoSubjet",  # Fill bin 0
            op.c_int(0),
            hasNoSubjet,
            EquidistantBinning(3, 0., 3.),
            title='Boosted jet without subjet')
        plot_hasOneSubjet = Plot.make1D(
            "plot_hasOneSubjet",  # Fill bin 1
            op.c_int(1),
            hasOneSubjet,
            EquidistantBinning(3, 0., 3.),
            title='Boosted jet with one subjet')
        plot_hasTwoSubjet = Plot.make1D(
            "plot_hasTwoSubjet",  # Fill bin 2
            op.c_int(2),
            hasTwoSubjet,
            EquidistantBinning(3, 0., 3.),
            title='Boosted jet with two subjets')
        plots.append(
            SummedPlot(
                "NumberOfSubjets",
                [plot_hasNoSubjet, plot_hasOneSubjet, plot_hasTwoSubjet],
                xTitle="Number of subjets in boosted jet"))

        # Plot jets quantities without the dilepton selections #
        plots += makeFatJetPlots(self,
                                 sel=hasBoostedJets,
                                 fatjet=bjetsBoosted[0],
                                 suffix="BoostedJets",
                                 channel="NoChannel")
        plots += makeJetsPlots(self,
                               sel=hasResolvedJets,
                               jets=bjetsResolved,
                               suffix="ResolvedJets",
                               channel="NoChannel")

        #############################################################################
        ##################### Jets + Dilepton combination ###########################
        #############################################################################
        # Combine dilepton and Resolved (Exclusive = NOT Boosted) selections #
        hasOsElElOutZResolvedJets = hasOsElElOutZ.refine(
            "hasOsElElOutZResolvedJets",
            cut=[
                op.rng_len(jets) >= 2,
                op.rng_len(bjetsResolved) >= 1,
                op.rng_len(bjetsBoosted) == 0
            ])
        hasOsMuMuOutZResolvedJets = hasOsMuMuOutZ.refine(
            "hasOsMuMuOutZResolvedJets",
            cut=[
                op.rng_len(jets) >= 2,
                op.rng_len(bjetsResolved) >= 1,
                op.rng_len(bjetsBoosted) == 0
            ])
        hasOsElMuOutZResolvedJets = hasOsElMuOutZ.refine(
            "hasOsElMuOutZResolvedJets",
            cut=[
                op.rng_len(jets) >= 2,
                op.rng_len(bjetsResolved) >= 1,
                op.rng_len(bjetsBoosted) == 0
            ])
        hasOsMuElOutZResolvedJets = hasOsMuElOutZ.refine(
            "hasOsMuElOutZResolvedJets",
            cut=[
                op.rng_len(jets) >= 2,
                op.rng_len(bjetsResolved) >= 1,
                op.rng_len(bjetsBoosted) == 0
            ])

        # Combine dilepton and Boosted selections #
        hasOsElElOutZBoostedJets = hasOsElElOutZ.refine(
            "hasOsElElOutZBoostedJets", cut=[op.rng_len(bjetsBoosted) >= 1])
        hasOsMuMuOutZBoostedJets = hasOsMuMuOutZ.refine(
            "hasOsMuMuOutZBoostedJets", cut=[op.rng_len(bjetsBoosted) >= 1])
        hasOsElMuOutZBoostedJets = hasOsElMuOutZ.refine(
            "hasOsElMuOutZBoostedJets", cut=[op.rng_len(bjetsBoosted) >= 1])
        hasOsMuElOutZBoostedJets = hasOsMuElOutZ.refine(
            "hasOsMuElOutZBoostedJets", cut=[op.rng_len(bjetsBoosted) >= 1])

        # Plot dilepton with OS, Z peak and Resolved jets selections #
        plots += makeDileptonPlots(self,
                                   sel=hasOsElElOutZResolvedJets,
                                   dilepton=OsElEl[0],
                                   suffix='hasOsdilep_OutZ_ResolvedJets',
                                   channel='ElEl')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuMuOutZResolvedJets,
                                   dilepton=OsMuMu[0],
                                   suffix='hasOsdilep_OutZ_ResolvedJets',
                                   channel='MuMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsElMuOutZResolvedJets,
                                   dilepton=OsElMu[0],
                                   suffix='hasOsdilep_OutZ_ResolvedJets',
                                   channel='ElMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuElOutZResolvedJets,
                                   dilepton=OsMuEl[0],
                                   suffix='hasOsdilep_OutZ_ResolvedJets',
                                   channel='MuEl')

        # Plot dilepton with OS dilepton, Z peak and Boosted jets selections #
        plots += makeDileptonPlots(self,
                                   sel=hasOsElElOutZBoostedJets,
                                   dilepton=OsElEl[0],
                                   suffix='hasOsdilep_OutZ_BoostedJets',
                                   channel='ElEl')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuMuOutZBoostedJets,
                                   dilepton=OsMuMu[0],
                                   suffix='hasOsdilep_OutZ_BoostedJets',
                                   channel='MuMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsElMuOutZBoostedJets,
                                   dilepton=OsElMu[0],
                                   suffix='hasOsdilep_OutZ_BoostedJets',
                                   channel='ElMu')
        plots += makeDileptonPlots(self,
                                   sel=hasOsMuElOutZBoostedJets,
                                   dilepton=OsMuEl[0],
                                   suffix='hasOsdilep_OutZ_BoostedJets',
                                   channel='MuEl')

        # Plotting the fatjet for OS dilepton, Z peak and Boosted jets selections #
        plots += makeFatJetPlots(self,
                                 sel=hasOsElElOutZBoostedJets,
                                 fatjet=bjetsBoosted[0],
                                 suffix="hasOsdilep_OutZ_BoostedJets",
                                 channel="ElEl")
        plots += makeFatJetPlots(self,
                                 sel=hasOsMuMuOutZBoostedJets,
                                 fatjet=bjetsBoosted[0],
                                 suffix="hasOsdilep_OutZ_BoostedJets",
                                 channel="MuMu")
        plots += makeFatJetPlots(self,
                                 sel=hasOsElMuOutZBoostedJets,
                                 fatjet=bjetsBoosted[0],
                                 suffix="hasOsdilep_OutZ_BoostedJets",
                                 channel="ElMu")
        plots += makeFatJetPlots(self,
                                 sel=hasOsMuElOutZBoostedJets,
                                 fatjet=bjetsBoosted[0],
                                 suffix="hasOsdilep_OutZ_BoostedJets",
                                 channel="MuEl")

        # Plotting the jets for OS dilepton, Z peak and Resolved jets selections #
        plots += makeJetsPlots(self,
                               sel=hasOsElElOutZResolvedJets,
                               jets=bjetsResolved,
                               suffix="hasOsdilep_OutZ_ResolvedJets",
                               channel="ElEl")
        plots += makeJetsPlots(self,
                               sel=hasOsMuMuOutZResolvedJets,
                               jets=bjetsResolved,
                               suffix="hasOsdilep_OutZ_ResolvedJets",
                               channel="MuMu")
        plots += makeJetsPlots(self,
                               sel=hasOsElMuOutZResolvedJets,
                               jets=bjetsResolved,
                               suffix="hasOsdilep_OutZ_ResolvedJets",
                               channel="ElMu")
        plots += makeJetsPlots(self,
                               sel=hasOsMuElOutZResolvedJets,
                               jets=bjetsResolved,
                               suffix="hasOsdilep_OutZ_ResolvedJets",
                               channel="MuEl")

        ## helper selection (OR) to make sure jet calculations are only done once
        #hasOSLL = noSel.refine("hasOSLL", cut=op.OR(*( hasOSLL_cmbRng(rng) for rng in osLLRng.values())))
        #forceDefine(t._Jet.calcProd, hasOSLL)
        #for varNm in t._Jet.available:
        #    forceDefine(t._Jet[varNm], hasOSLL)
        return plots
    def definePlots(self, tree, noSel, sample=None, sampleCfg=None):
        from bamboo.plots import Plot, SummedPlot
        from bamboo.plots import EquidistantBinning as EqBin
        from bamboo import treefunctions as op

        if self.args.examples == "all":
            examples = list(i+1 for i in range(self.nExamples)) # 1-4 are fine, so is 7
        else:
            examples = list(set(int(tk) for tk in self.args.examples.split(",")))
        logger.info("Running the following examples: {0}".format(",".join(str(i) for i in examples)))
                
        plots = []
        if 1 in examples:
            ## Example 1: Plot the missing ET of all events.
            plots.append(Plot.make1D("Ex1_MET",
                tree.MET.pt, noSel,
                EqBin(100, 0., 2000.), title="MET (GeV)"))

        if 2 in examples:
            ## Example 2: Plot pT of all jets in all events.
            plots.append(Plot.make1D("Ex2_jetPt",
                op.map(tree.Jet, lambda j : j.pt), noSel,
                EqBin(100, 15., 60.), title="Jet p_{T} (GeV/c)"))

        if 3 in examples:
            ## Example 3: Plot pT of jets with |η| < 1.
            centralJets1 = op.select(tree.Jet, lambda j : op.abs(j.eta) < 1.)
            plots.append(Plot.make1D("Ex3_central1_jetPt",
                op.map(centralJets1, lambda j : j.pt), noSel,
                EqBin(100, 15., 60.), title="Jet p_{T} (GeV/c)"))

        if 4 in examples:
            ## Example 4: Plot the missing ET of events that have at least two jets with pT > 40 GeV.
            jets40 = op.select(tree.Jet, lambda j : j.pt > 40)
            hasTwoJets40 = noSel.refine("twoJets40", cut=(op.rng_len(jets40) >= 2))
            plots.append(Plot.make1D("Ex4_twoJets40_MET",
                tree.MET.pt, hasTwoJets40,
                EqBin(100, 0., 2000.), title="MET (GeV)"))

        if 5 in examples:
            ## Example 5: Plot the missing ET of events that have an opposite-sign muon pair with an invariant mass between 60 and 120 GeV.
            dimu_Z = op.combine(tree.Muon, N=2, pred=(lambda mu1, mu2 : op.AND(
                mu1.charge != mu2.charge,
                op.in_range(60., op.invariant_mass(mu1.p4, mu2.p4), 120.)
                )))
            hasDiMuZ = noSel.refine("hasDiMuZ", cut=(op.rng_len(dimu_Z) > 0))
            plots.append(Plot.make1D("Ex5_dimuZ_MET",
                tree.MET.pt, hasDiMuZ,
                EqBin(100, 0., 2000.), title="MET (GeV)"))

        if 6 in examples:
            ## Example 6: Plot pT of the trijet system with the mass closest to 172.5 GeV in each event and plot the maximum b-tagging discriminant value among the jets in the triplet.
            trijets = op.combine(tree.Jet, N=3)
            hadTop = op.rng_min_element_by(trijets,
                fun=lambda comb: op.abs((comb[0].p4+comb[1].p4+comb[2].p4).M()-172.5))
            hadTop_p4 = (hadTop[0].p4 + hadTop[1].p4 + hadTop[2].p4)
            hasTriJet = noSel.refine("hasTriJet", cut=(op.rng_len(trijets) > 0))
            plots.append(Plot.make1D("Ex6_trijet_topPt",
                hadTop_p4.Pt(), hasTriJet,
                EqBin(100, 15., 40.), title="Trijet p_{T} (GeV/c)"))
            plots.append(Plot.make1D("Ex6_trijet_maxbtag",
                op.max(op.max(hadTop[0].btag, hadTop[1].btag), hadTop[2].btag), hasTriJet,
                EqBin(100, 0., 1.), title="Trijet maximum b-tag"))
            if verbose:
                plots.append(Plot.make1D("Ex6_njets",
                    op.rng_len(tree.Jet), noSel,
                    EqBin(20, 0., 20.), title="Number of jets"))
                plots.append(Plot.make1D("Ex6_ntrijets",
                    op.rng_len(trijets), noSel,
                    EqBin(100, 0., 1000.), title="Number of 3-jet combinations"))
                plots.append(Plot.make1D("Ex6_trijet_mass",
                    hadTop_p4.M(), hasTriJet,
                    EqBin(100, 0., 250.), title="Trijet mass (GeV/c^{2})"))

        if 7 in examples:
            ## Example 7: Plot the sum of pT of jets with pT > 30 GeV that are not within 0.4 in ΔR of any lepton with pT > 10 GeV.
            el10  = op.select(tree.Electron, lambda el : el.pt > 10.)
            mu10  = op.select(tree.Muon    , lambda mu : mu.pt > 10.)
            cleanedJets30 = op.select(tree.Jet, lambda j : op.AND(
                j.pt > 30.,
                op.NOT(op.rng_any(el10, lambda el : op.deltaR(j.p4, el.p4) < 0.4 )),
                op.NOT(op.rng_any(mu10, lambda mu : op.deltaR(j.p4, mu.p4) < 0.4 ))
                ))
            plots.append(Plot.make1D("Ex7_sumCleanedJetPt",
                op.rng_sum(cleanedJets30, lambda j : j.pt), noSel,
                EqBin(100, 15., 200.), title="Sum p_{T} (GeV/c)"))

        if 8 in examples:
            ## Example 8: For events with at least three leptons and a same-flavor opposite-sign lepton pair, find the same-flavor opposite-sign lepton pair with the mass closest to 91.2 GeV and plot the transverse mass of the missing energy and the leading other lepton.
            # The plot is made for each of the different flavour categories (l+/- l-/+ l') and then summed,
            # because concatenation of containers is not (yet) supported.
            lepColl = { "El" : tree.Electron, "Mu" : tree.Muon }
            mt3lPlots = []
            for dlNm,dlCol in lepColl.items():
                dilep = op.combine(dlCol, N=2, pred=(lambda l1,l2 : op.AND(l1.charge != l2.charge)))
                hasDiLep = noSel.refine("hasDilep{0}{0}".format(dlNm), cut=(op.rng_len(dilep) > 0))
                dilepZ = op.rng_min_element_by(dilep, fun=lambda ll : op.abs(op.invariant_mass(ll[0].p4, ll[1].p4)-91.2))
                for tlNm,tlCol in lepColl.items():
                    if tlCol == dlCol:
                        hasTriLep = hasDiLep.refine("hasTrilep{0}{0}{1}".format(dlNm,tlNm),
                            cut=(op.rng_len(tlCol) > 2))
                        residLep = op.select(tlCol, lambda l : op.AND(l.idx != dilepZ[0].idx, l.idx != dilepZ[1].idx))
                        l3 = op.rng_max_element_by(residLep, lambda l : l.pt)
                    else:
                        hasTriLep = hasDiLep.refine("hasTriLep{0}{0}{1}".format(dlNm,tlNm),
                            cut=(op.rng_len(tlCol) > 0))
                        l3 = op.rng_max_element_by(tlCol, lambda l : l.pt)
                    mtPlot = Plot.make1D("Ex8_3lMT_{0}{0}{1}".format(dlNm,tlNm),
                        op.sqrt(2*l3.pt*tree.MET.pt*(1-op.cos(l3.phi-tree.MET.phi))), hasTriLep,
                        EqBin(100, 15., 250.), title="M_{T} (GeV/c^2)")
                    mt3lPlots.append(mtPlot)
                    plots.append(mtPlot)
            plots.append(SummedPlot("Ex8_3lMT", mt3lPlots))

        return plots
    def definePlots(self, t, noSel, sample=None, sampleCfg=None):
        from bamboo.plots import Plot, CutFlowReport
        from bamboo.plots import EquidistantBinning as EqB
        from bamboo import treefunctions as op

        plots = []

        #definitions

        electrons = op.select(t.elec, lambda el : op.AND(
        el.pt > 20., op.abs(el.eta) < 2.5
        ))
        
        muons = op.select(t.muon, lambda mu : op.AND(
        mu.pt > 20., op.abs(mu.eta) < 2.5
        ))
        
        cleanedElectrons = op.select(electrons, lambda el : op.NOT(
        op.rng_any(muons, lambda mu : op.deltaR(el.p4, mu.p4) < 0.3 )
        ))

        # we are taking the second isopass to be on which is equal to the medium working point
        isolatedElectrons = op.select(cleanedElectrons, lambda el : el.isopass & (1<<2) )
        
        identifiedElectrons = op.select(isolatedElectrons, lambda el : el.idpass & (1<<2) )
        
        cleanedMuons = op.select(muons, lambda mu : op.NOT(
        op.rng_any(electrons, lambda el : op.deltaR(mu.p4, el.p4) < 0.3 )
        ))
        
        isolatedMuons = op.select(cleanedMuons, lambda mu : mu.isopass & (1<<2) )
        
        identifiedMuons = op.select(isolatedMuons, lambda mu : mu.idpass & (1<<2) )
        
        InvMassMuMU = op.invariant_mass(identifiedMuons[0].p4, identifiedMuons[1].p4 )
        
        cleanedJets = op.select(t.jetpuppi, lambda j : op.AND(
        op.NOT(op.rng_any(identifiedElectrons, lambda el : op.deltaR(el.p4, j.p4) < 0.3) ),
        op.NOT(op.rng_any(identifiedMuons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3) )
        ))

        cleanedGoodJets = op.select(cleanedJets, lambda j : op.AND(
        j.pt > 30, op.abs(j.eta) < 2.5
        ))

        btaggedJets = op.select(cleanedGoodJets, lambda j : j.btag & (1<<2))

        met = op.select(t.metpuppi)

        #selections

        #selection1 : Oppositely charged MuMu selection
        sel1 = noSel.refine("nmumu", cut = [op.AND(
            (op.rng_len(identifiedMuons) > 1), (op.product(identifiedMuons[0].charge, identifiedMuons[1].charge) < 0 ))]) 

        #selection2 : Invariant mass selection
        sel2 = sel1.refine("InvM", cut = [op.NOT(op.in_range(76, InvMassMuMU, 106))])

        #selection3 : two jets selection
        sel3 = sel2.refine("njet", cut = [op.rng_len(cleanedGoodJets) > 1])
    
        #selection4 : at least 1 among two leading jets is b-tagged
        sel4 = sel3.refine("btag", cut = [op.OR(
            cleanedGoodJets[0].btag & (1<<2), cleanedGoodJets[1].btag & (1<<2))])

        #selection5 : MET > 40 GeV
        sel5 = sel4.refine("MET", cut = [met[0].pt > 40])

        #plots
            
            #noSel
        plots.append(Plot.make1D("nJetsNoSel", op.rng_len(cleanedGoodJets), noSel, EqB(10, 0., 10.), title="nJets"))

        plots.append(Plot.make1D("nbtaggedJetsNoSel", op.rng_len(btaggedJets), noSel, EqB(10, 0., 10.), title="nbtaggedJets"))
  
        plots.append(Plot.make1D("nMuNoSel", op.rng_len(identifiedMuons), noSel, EqB(15, 0., 15.), title="nMuons"))
        
        plots.append(Plot.make1D("METptNoSel", met[0].pt, noSel, EqB(50, 0., 250), title="MET_PT"))
        
            #sel1
        
        plots.append(Plot.make1D("nJetsSel1", op.rng_len(cleanedGoodJets), sel1, EqB(10, 0., 10.), title="nJets"))

        plots.append(Plot.make1D("nbtaggedJetsSel1", op.rng_len(btaggedJets), sel1, EqB(10, 0., 10.), title="nbtaggedJets"))

        plots.append(Plot.make1D("nMuSel1", op.rng_len(identifiedMuons), sel1, EqB(10, 0., 10.), title="nMuons"))

        plots.append(Plot.make1D("InvMassTwoMuonsSel1", InvMassMuMU, sel1, EqB(30, 0, 300), title="m(ll)"))
                  
        plots.append(Plot.make1D("LeadingMuonPTSel1", muons[0].pt, sel1, EqB(30, 0., 250.), title=" Leading Muon PT"))
            
        plots.append(Plot.make1D("SubLeadingMuonPTSel1", muons[1].pt, sel1, EqB(30, 0., 250.), title="SubLeading Muon PT"))

        plots.append(Plot.make1D("LeadingMuonEtaSel1", muons[0].eta, sel1, EqB(30, -3, 3), title=" Leading Muon eta"))
            
        plots.append(Plot.make1D("SubLeadingMuonEtaSel1", muons[1].eta, sel1, EqB(30, -3, 3), title="SubLeading Muon eta"))
        
        plots.append(Plot.make1D("METptSel1", met[0].pt, sel1, EqB(50, 0., 250), title="MET_PT"))
                            
            #sel2

        plots.append(Plot.make1D("nJetsSel2", op.rng_len(cleanedGoodJets), sel2, EqB(10, 0., 10.), title="nJets"))

        plots.append(Plot.make1D("nbtaggedJetsSel2", op.rng_len(btaggedJets), sel2, EqB(10, 0., 10.), title="nbtaggedJets"))

        plots.append(Plot.make1D("nMuSel2", op.rng_len(identifiedMuons), sel2, EqB(10, 0., 10.), title="nMuons"))

        plots.append(Plot.make1D("InvMassTwoMuonsSel2", InvMassMuMU, sel2, EqB(20, 20., 300.), title="m(ll)"))
        
        plots.append(Plot.make1D("LeadingMuonPTSel2", muons[0].pt, sel2, EqB(30, 0., 250.), title=" Leading Muon PT"))

        plots.append(Plot.make1D("SubLeadingMuonPTSel2", muons[1].pt, sel2, EqB(30, 0., 200.), title=" SubLeading Muon PT"))

        plots.append(Plot.make1D("LeadingMuonEtaSel2", muons[0].eta, sel2, EqB(30, -3, 3), title=" Leading Muon Eta"))
            
        plots.append(Plot.make1D("SubLeadingMuonEtaSel2", muons[1].eta, sel2, EqB(30, -3, 3), title=" SubLeading Muon Eta"))

        plots.append(Plot.make1D("METptSel2", met[0].pt, sel2, EqB(50, 0., 250), title="MET_PT"))
                        
            #sel3
            
        plots.append(Plot.make1D("nJetsSel3", op.rng_len(cleanedGoodJets), sel3, EqB(10, 0., 10.), title="nJets"))

        plots.append(Plot.make1D("nbtaggedJetsSel3", op.rng_len(btaggedJets), sel3, EqB(10, 0., 10.), title="nbtaggedJets"))

        plots.append(Plot.make1D("LeadingJetPTSel3", cleanedGoodJets[0].pt, sel3, EqB(50, 0., 350.), title="Leading jet PT"))
            
        plots.append(Plot.make1D("SubLeadingJetPTSel3", cleanedGoodJets[1].pt, sel3, EqB(50, 0., 350.), title="SubLeading jet PT"))
            
        plots.append(Plot.make1D("LeadingJetEtaSel3", cleanedGoodJets[0].eta, sel3, EqB(30, -3, 3), title="Leading jet Eta"))
            
        plots.append(Plot.make1D("SubLeadingJetEtaSel3", cleanedGoodJets[1].eta, sel3, EqB(30, -3, 3), title="SubLeading jet Eta"))

        plots.append(Plot.make1D("nMuSel3", op.rng_len(identifiedMuons), sel3, EqB(10, 0., 10.), title="nMuons"))
        
        plots.append(Plot.make1D("LeadingMuonPTSel3", muons[0].pt, sel3, EqB(30, 0., 250.), title=" Leading Muon PT"))
            
        plots.append(Plot.make1D("SubLeadingMuonPTSel3", muons[1].pt, sel3, EqB(30, 0., 200.), title=" SubLeading Muon PT"))

        plots.append(Plot.make1D("LeadingMuonEtaSel3", muons[0].eta, sel3, EqB(30, -3, 3), title=" Leading Muon Eta"))
            
        plots.append(Plot.make1D("SubLeadingMuonEtaSel3", muons[1].eta, sel3, EqB(30, -3, 3), title=" SubLeading Muon Eta"))
                
        plots.append(Plot.make1D("InvMassTwoMuonsSel3", InvMassMuMU, sel3, EqB(30, 0, 300), title="m(ll)"))
        
        plots.append(Plot.make1D("METptSel3", met[0].pt, sel3, EqB(50, 0., 250), title="MET_PT"))
        
            #sel4
             
        plots.append(Plot.make1D("nJetsSel4", op.rng_len(cleanedGoodJets), sel4, EqB(10, 0, 10), title="nJets"))

        plots.append(Plot.make1D("nbtaggedJetsSel4", op.rng_len(btaggedJets), sel4, EqB(10, 0., 10.), title="nbtaggedJets"))

        plots.append(Plot.make1D("LeadingJetPTSel4", cleanedGoodJets[0].pt, sel4, EqB(50, 0., 250.), title="Leading jet PT"))
            
        plots.append(Plot.make1D("SubLeadingJetPTSel4", cleanedGoodJets[1].pt, sel4, EqB(50, 0., 250.), title="SubLeading jet PT"))
            
        plots.append(Plot.make1D("LeadingJetEtaSel4", cleanedGoodJets[0].eta, sel4, EqB(30, -3, 3.), title="Leading jet Eta"))
            
        plots.append(Plot.make1D("SubLeadingJetEtaSel4", cleanedGoodJets[1].eta, sel4, EqB(30, -3, 3.), title="SubLeading jet Eta"))
        
        plots.append(Plot.make1D("nMuSel4", op.rng_len(identifiedMuons), sel4, EqB(10, 0., 10.), title="nMuons"))
                
        plots.append(Plot.make1D("LeadingMuonPTSel4", muons[0].pt, sel4, EqB(30, 0., 250.), title=" Leading Muon PT"))
        
        plots.append(Plot.make1D("SubLeadingMuonPTSel4", muons[1].pt, sel4, EqB(30, 0., 200.), title=" SubLeading Muon PT"))
        
        plots.append(Plot.make1D("LeadingMuonEtaSel4", muons[0].eta, sel4, EqB(30, -3, 3), title=" Leading Muon Eta"))
        
        plots.append(Plot.make1D("SubLeadingMuonEtaSel4", muons[1].eta, sel4, EqB(30, -3, 3), title=" SubLeading Muon Eta"))

        plots.append(Plot.make1D("InvMassTwoMuonsSel4", InvMassMuMU, sel4, EqB(30, 0, 300), title="m(ll)"))
        
        plots.append(Plot.make1D("METptSel4", met[0].pt, sel4, EqB(50, 0., 250), title="MET_PT"))

            #sel5
                
        plots.append(Plot.make1D("nJetsSel5", op.rng_len(cleanedGoodJets), sel5, EqB(10, 0, 10), title="nJets"))

        plots.append(Plot.make1D("nbtaggedJetsSel5", op.rng_len(btaggedJets), sel5, EqB(10, 0., 10.), title="nbtaggedJets"))

        plots.append(Plot.make1D("LeadingJetPTSel5", cleanedGoodJets[0].pt, sel5, EqB(50, 0., 250.), title="Leading jet PT"))
            
        plots.append(Plot.make1D("SubLeadingJetPTSel5", cleanedGoodJets[1].pt, sel5, EqB(50, 0., 250.), title="SubLeading jet PT"))
            
        plots.append(Plot.make1D("LeadingJetEtaSel5", cleanedGoodJets[0].eta, sel5, EqB(30, -3, 3.), title="Leading jet Eta"))
            
        plots.append(Plot.make1D("SubLeadingJetEtaSel5", cleanedGoodJets[1].eta, sel5, EqB(30, -3, 3.), title="SubLeading jet Eta"))
        
        plots.append(Plot.make1D("nMuSel5", op.rng_len(identifiedMuons), sel5, EqB(10, 0., 10.), title="nMuons"))
                
        plots.append(Plot.make1D("LeadingMuonPTSel5", muons[0].pt, sel5, EqB(30, 0., 250.), title=" Leading Muon PT"))
        
        plots.append(Plot.make1D("SubLeadingMuonPTSel5", muons[1].pt, sel5, EqB(30, 0., 200.), title=" SubLeading Muon PT"))
        
        plots.append(Plot.make1D("LeadingMuonEtaSel5", muons[0].eta, sel5, EqB(30, -3, 3), title=" Leading Muon Eta"))
        
        plots.append(Plot.make1D("SubLeadingMuonEtaSel5", muons[1].eta, sel5, EqB(30, -3, 3), title=" SubLeading Muon Eta"))

        plots.append(Plot.make1D("InvMassTwoMuonsSel5", InvMassMuMU, sel5, EqB(30, 0, 300), title="m(ll)"))

        plots.append(Plot.make1D("METptSel5", met[0].pt, sel5, EqB(50, 0., 250), title="MET_PT > 40"))

        # Efficiency Report on terminal and the .tex output

        cfr = CutFlowReport("yields")
        cfr.add(noSel, "Sel0: No selection")
        cfr.add(sel1, "Sel1: nMuMu >= 2")
        cfr.add(sel2, "Sel2: InvM")
        cfr.add(sel3, "Sel3: nJet >= 2")
        cfr.add(sel4, "Sel4: btag")
        cfr.add(sel5, "Sel5: MET")

        plots.append(cfr)
                            
        return plots
Exemple #7
0
    def definePlots(self, t, noSel, sample=None, sampleCfg=None):    
        from bamboo.analysisutils import forceDefine
        from bamboo.plots import Plot
        from bamboo.plots import EquidistantBinning as EqB
        from bamboo import treefunctions as op

        era = sampleCfg.get("era") if sampleCfg else None
        noSel = noSel.refine("passMETFlags", cut=METFilter(t.Flag, era) )
        puWeightsFile = None
        
        if era == "2016":
            sfTag="94X"
            puWeightsFile = os.path.join(os.path.dirname(__file__), "data/PileupFullRunII", "puweights2016.json")
        
        elif era == "2017":
            sfTag="94X"     
            puWeightsFile = os.path.join(os.path.dirname(__file__), "data/PileupFullRunII", "puweights2017.json")
        
        elif era == "2018":
            sfTag="102X"
            puWeightsFile = os.path.join(os.path.dirname(__file__), "data/PileupFullRunII", "puweights2018.json")
        
        if self.isMC(sample) and puWeightsFile is not None:
            from bamboo.analysisutils import makePileupWeight
            noSel = noSel.refine("puWeight", weight=makePileupWeight(puWeightsFile, t.Pileup_nTrueInt, systName="pileup"))
        
        isMC = self.isMC(sample)
        plots = []
        forceDefine(t._Muon.calcProd, noSel)

        # Wp // 2016- 2017 -2018 : Muon_mediumId   // https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideMuonIdRun2#Muon_Isolation
        #To suppress nonprompt lep-tons, the impact parameter in three dimensions of the lepton track, with respect to the primaryvertex, is required to be less than 4 times its uncertainty (|SIP3D|<4)
        sorted_muons = op.sort(t.Muon, lambda mu : -mu.pt)
        muons = op.select(sorted_muons, lambda mu : op.AND(mu.pt > 10., op.abs(mu.eta) < 2.4, mu.mediumId, mu.pfRelIso04_all<0.15, op.abs(mu.sip3d < 4.)))
      
        # i pass 2016 seprate from 2017 &2018  because SFs need to be combined for BCDEF and GH eras !
        if era=="2016":
            doubleMuTrigSF = get_scalefactor("dilepton", ("doubleMuLeg_HHMoriond17_2016"), systName="mumutrig")    
            muMediumIDSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "id_medium"), combine="weight", systName="muid")
            muMediumISOSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "iso_tight_id_medium"), combine="weight", systName="muiso")
        else:
            doubleMuTrigSF = get_scalefactor("dilepton", ("doubleMuLeg_HHMoriond17_2016"), systName="mumutrig")    
            muMediumIDSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "id_medium"), systName="muid")
            muMediumISOSF = get_scalefactor("lepton", ("muon_{0}_{1}".format(era, sfTag), "iso_tight_id_medium"), systName="muiso") 
        
        #Wp  // 2016: Electron_cutBased_Sum16==3  -> medium     // 2017 -2018  : Electron_cutBased ==3   --> medium ( Fall17_V2)
        # asking for electrons to be in the Barrel region with dz<1mm & dxy< 0.5mm   //   Endcap region dz<2mm & dxy< 0.5mm 
        # cut-based ID Fall17 V2 the recomended one from POG for the FullRunII
        sorted_electrons = op.sort(t.Electron, lambda ele : -ele.pt)
        electrons = op.select(sorted_electrons, lambda ele : op.AND(ele.pt > 15., op.abs(ele.eta) < 2.5 , ele.cutBased>=3, op.abs(ele.sip3d)< 4., op.OR(op.AND(op.abs(ele.dxy) < 0.05, op.abs(ele.dz) < 0.1), op.AND(op.abs(ele.dxy) < 0.05, op.abs(ele.dz) < 0.2) ))) 

        elMediumIDSF = get_scalefactor("lepton", ("electron_{0}_{1}".format(era,sfTag), "id_medium"), systName="elid")
        doubleEleTrigSF = get_scalefactor("dilepton", ("doubleEleLeg_HHMoriond17_2016"), systName="eleltrig")     

        elemuTrigSF = get_scalefactor("dilepton", ("elemuLeg_HHMoriond17_2016"), systName="elmutrig")
        mueleTrigSF = get_scalefactor("dilepton", ("mueleLeg_HHMoriond17_2016"), systName="mueltrig")
        

        MET = t.MET if era != "2017" else t.METFixEE2017
        corrMET=METcorrection(MET,t.PV,sample,era,self.isMC(sample))
        
        
        #######  select jets  
        ##################################
        #// 2016 - 2017 - 2018   ( j.jetId &2) ->      tight jet ID
        # For 2017 data, there is the option of "Tight" or "TightLepVeto", depending on how much you want to veto jets that overlap with/are faked by leptons
        sorted_AK4jets=op.sort(t.Jet, lambda j : -j.pt)
        AK4jetsSel = op.select(sorted_AK4jets, lambda j : op.AND(j.pt > 20., op.abs(j.eta)< 2.4, (j.jetId &2)))#   j.jetId == 6))# oldcut: (j.jetId &2)))        
        # exclude from the jetsSel any jet that happens to include within its reconstruction cone a muon or an electron.
        AK4jets= op.select(AK4jetsSel, lambda j : op.AND(op.NOT(op.rng_any(electrons, lambda ele : op.deltaR(j.p4, ele.p4) < 0.3 )), op.NOT(op.rng_any(muons, lambda mu : op.deltaR(j.p4, mu.p4) < 0.3 ))))
        
        # order jets by *decreasing* deepFlavour
        cleaned_AK4JetsByDeepFlav = op.sort(AK4jets, lambda j: -j.btagDeepFlavB)
        cleaned_AK4JetsByDeepB = op.sort(AK4jets, lambda j: -j.btagDeepB)

        # Boosted Region
        sorted_AK8jets=op.sort(t.FatJet, lambda j : -j.pt)
        AK8jetsSel = op.select(sorted_AK8jets, lambda j : op.AND(j.pt > 200., op.abs(j.eta)< 2.4, (j.jetId &2), j.subJet1._idx.result != -1, j.subJet2._idx.result != -1))

        AK8jets= op.select(AK8jetsSel, lambda j : op.AND(op.NOT(op.rng_any(electrons, lambda ele : op.deltaR(j.p4, ele.p4) < 0.3 )), op.NOT(op.rng_any(muons, lambda mu : op.deltaR(j.p4, mu.p4) < 0.3 ))))
        
        cleaned_AK8JetsByDeepB = op.sort(AK8jets, lambda j: -j.btagDeepB)
        
        # Now,  let's ask for the jets to be a b-jets 
        # DeepCSV or deepJet Medium b-tag working point
        btagging = {
                "DeepCSV":{ # era: (loose, medium, tight)
                            "2016":(0.2217, 0.6321, 0.8953), 
                            "2017":(0.1522, 0.4941, 0.8001), 
                            "2018":(0.1241, 0.4184, 0.7527) 
                          },
                "DeepFlavour":{
                            "2016":(0.0614, 0.3093, 0.7221), 
                            "2017":(0.0521, 0.3033, 0.7489), 
                            "2018":(0.0494, 0.2770, 0.7264) 
                          }
                   }
        
        # bjets ={ "DeepFlavour": {"L": jets pass loose  , "M":  jets pass medium  , "T":jets pass tight    }     
        #           "DeepCSV":    {"L":    ---           , "M":         ---        , "T":   ----            }
        #        }
        # FIXME 
        bjets_boosted = {}
        bjets_resolved = {}
        
        #WorkingPoints = ["L", "M", "T"]
        WorkingPoints = ["M"]
        for tagger  in btagging.keys():
            
            bJets_AK4_deepflavour ={}
            bJets_AK4_deepcsv ={}
            bJets_AK8_deepcsv ={}
            # FIXME idx is not propagated properly when i pass only one or two wp !! 
            for wp in sorted(WorkingPoints):
                
                suffix = ("loose" if wp=='L' else ("medium" if wp=='M' else "tight"))
                idx = ( 0 if wp=="L" else ( 1 if wp=="M" else 2))
                if tagger=="DeepFlavour":
                    
                    print ("Btagging: Era= {0}, Tagger={1}, Pass_{2}_working_point={3}".format(era, tagger, suffix, btagging[tagger][era][idx] ))
                    print ("***********************************************", idx, wp)
                    print ("btag_{0}_94X".format(era).replace("94X", "102X" if era=="2018" else "94X"), "{0}_{1}".format('DeepJet', suffix))
                    
                    bJets_AK4_deepflavour[wp] = op.select(cleaned_AK4JetsByDeepFlav, lambda j : j.btagDeepFlavB >= btagging[tagger][era][idx] )
                    Jet_DeepFlavourBDisc = { "BTagDiscri": lambda j : j.btagDeepFlavB }
                    deepBFlavScaleFactor = get_scalefactor("jet", ("btag_{0}_94X".format(era).replace("94X", "102X" if era=="2018" else "94X"), "{0}_{1}".format('DeepJet', suffix)),
                                                        additionalVariables=Jet_DeepFlavourBDisc, 
                                                        getFlavour=(lambda j : j.hadronFlavour),
                                                        systName="btagging{0}".format(era))  
                    
                    bjets_resolved[tagger]=bJets_AK4_deepflavour
                    
                else:
                    print ("Btagging: Era= {0}, Tagger={1}, Pass_{2}_working_point={3}".format(era, tagger, suffix, btagging[tagger][era][idx] ))
                    print ("***********************************************", idx, wp)
                    print ("btag_{0}_94X".format(era).replace("94X", "102X" if era=="2018" else "94X"), "{0}_{1}".format('DeepCSV', suffix))
                    
                    bJets_AK4_deepcsv[wp] = op.select(cleaned_AK4JetsByDeepB, lambda j : j.btagDeepB >= btagging[tagger][era][idx] )   
                    bJets_AK8_deepcsv[wp] = op.select(cleaned_AK8JetsByDeepB, lambda j : op.AND(j.subJet1.btagDeepB >= btagging[tagger][era][idx] , j.subJet2.btagDeepB >= btagging[tagger][era][idx]))   
                    Jet_DeepCSVBDis = { "BTagDiscri": lambda j : j.btagDeepB }
                    subJet_DeepCSVBDis = { "BTagDiscri": lambda j : op.AND(j.subJet1.btagDeepB, j.subJet2.btagDeepB) }
                    
                    # FIXME for boosted and resolved i will use # tagger need to pass jsons files to scale factors above ! 
                    deepB_AK4ScaleFactor = get_scalefactor("jet", ("btag_{0}_94X".format(era).replace("94X", "102X" if era=="2018" else "94X"), "{0}_{1}".format('DeepCSV', suffix)), 
                                                additionalVariables=Jet_DeepCSVBDis,
                                                getFlavour=(lambda j : j.hadronFlavour),
                                                systName="btagging{0}".format(era))  
                    # FIXME
                    #deepB_AK8ScaleFactor = get_scalefactor("jet", ("btag_{0}_94X".format(era).replace("94X", "102X" if era=="2018" else "94X"), "subjet_{0}_{1}".format('DeepCSV', suffix)), 
                                                #additionalVariables=Jet_DeepCSVBDis,
                                                #getFlavour=(lambda j : j.subJet1.hadronFlavour),
                                                #systName="btagging{0}".format(era))  
                    
                    bjets_resolved[tagger]=bJets_AK4_deepcsv
                    bjets_boosted[tagger]=bJets_AK8_deepcsv
        
        bestDeepFlavourPair={}
        bestDeepCSVPair={}
        bestJetPairs= {}
        bjets = {}
        # For the Resolved only 
        class GetBestJetPair(object):
            JetsPair={}
            def __init__(self, JetsPair, tagger, wp):
                def ReturnHighestDiscriminatorJet(tagger, wp):
                    if tagger=="DeepCSV":
                        return op.sort(safeget(bjets_resolved, tagger, wp), lambda j: - j.btagDeepB)
                    elif tagger=="DeepFlavour":
                        return op.sort(safeget(bjets_resolved, tagger, wp), lambda j: - j.btagDeepFlavB)
                    else:
                        raise RuntimeError("Something went wrong in returning {0} discriminator !".format(tagger))
               
                firstBest=ReturnHighestDiscriminatorJet(tagger, wp)[0]
                JetsPair[0]=firstBest
                secondBest=ReturnHighestDiscriminatorJet(tagger, wp)[1]
                JetsPair[1]=secondBest
        #  bestJetPairs= { "DeepFlavour": bestDeepFlavourPair,
        #                  "DeepCSV":     bestDeepCSVPair    
        #                }
        
        #######  Zmass reconstruction : Opposite Sign , Same Flavour leptons
        ########################################################
        # supress quaronika resonances and jets misidentified as leptons
        LowMass_cut = lambda dilep: op.invariant_mass(dilep[0].p4, dilep[1].p4)>12.
        ## Dilepton selection: opposite sign leptons in range 70.<mll<120. GeV 
        osdilep_Z = lambda l1,l2 : op.AND(l1.charge != l2.charge, op.in_range(70., op.invariant_mass(l1.p4, l2.p4), 120.))

        osLLRng = {
                "MuMu" : op.combine(muons, N=2, pred= osdilep_Z),
                "ElEl" : op.combine(electrons, N=2, pred=osdilep_Z),
                #"ElMu" : op.combine((electrons, muons), pred=lambda ele,mu : op.AND(osdilep_Z(ele,mu), ele.pt > mu.pt )),
                #"MuEl" : op.combine((muons, electrons), pred=lambda mu,ele : op.AND(osdilep_Z(mu,ele), mu.pt > ele.pt))
                }

        hasOSLL_cmbRng = lambda cmbRng : op.AND(op.rng_len(cmbRng) > 0, cmbRng[0][0].pt > 25.) # TODO The leading pT for the µµ channel should be above 20 Gev !

        
        ## helper selection (OR) to make sure jet calculations are only done once
        hasOSLL = noSel.refine("hasOSLL", cut=op.OR(*( hasOSLL_cmbRng(rng) for rng in osLLRng.values())))
        forceDefine(t._Jet.calcProd, hasOSLL)
        forceDefine(getattr(t, "_{0}".format("MET" if era != "2017" else "METFixEE2017")).calcProd, hasOSLL)
        
        llSFs = {
            "MuMu" : (lambda ll : [ muMediumIDSF(ll[0]), muMediumIDSF(ll[1]), muMediumISOSF(ll[0]), muMediumISOSF(ll[1]), doubleMuTrigSF(ll) ]),
            "ElMu" : (lambda ll : [ elMediumIDSF(ll[0]), muMediumIDSF(ll[1]), muMediumISOSF(ll[1]), elemuTrigSF(ll) ]),
            "MuEl" : (lambda ll : [ muMediumIDSF(ll[0]), muMediumISOSF(ll[0]), elMediumIDSF(ll[1]), mueleTrigSF(ll) ]),
            "ElEl" : (lambda ll : [ elMediumIDSF(ll[0]), elMediumIDSF(ll[1]), doubleEleTrigSF(ll) ])
            }
        
        categories = dict((channel, (catLLRng[0], hasOSLL.refine("hasOS{0}".format(channel), cut=hasOSLL_cmbRng(catLLRng), weight=(llSFs[channel](catLLRng[0]) if isMC else None)) )) for channel, catLLRng in osLLRng.items())

        ## btagging efficiencies plots
        #plots.extend(MakeBtagEfficienciesPlots(self, jets, bjets, categories))
        
        for channel, (dilepton, catSel) in categories.items():
            #----  Zmass (2Lepton OS && SF ) --------
            #plots.extend(MakeControlPlotsForZpic(self, catSel, dilepton, channel))
            
            #----  add Jets selection 
            TwoLeptonsTwoJets_Resolved = catSel.refine("TwoJet_{0}Sel_resolved".format(channel), cut=[ op.rng_len(AK4jets) > 1 ])
            TwoLeptonsTwoJets_Boosted = catSel.refine("OneJet_{0}Sel_boosted".format(channel), cut=[ op.rng_len(AK8jets) > 0 ])
            #plots.extend(makeJetPlots(self, TwoLeptonsTwoJets_Resolved, AK4jets, channel))
            #plots.extend(makeBoostedJetPLots(self, TwoLeptonsTwoJets_Boosted, AK8jets, channel))
            
            # ----- plots : mll, mlljj, mjj, nVX, pT, eta  : basic selection plots ------
            #plots.extend(MakeControlPlotsForBasicSel(self, TwoLeptonsTwoJets_Resolved, AK4jets, dilepton, channel))
            #plots.extend(MakeControlPlotsForBasicSel(self, TwoLeptonsTwoJets_boosted, AK8jets, dilepton, channel))

            
            for wp in WorkingPoints: 
                # Get the best AK4 JETS 
                GetBestJetPair(bestDeepCSVPair,"DeepCSV", wp)
                GetBestJetPair(bestDeepFlavourPair,"DeepFlavour", wp)
                bestJetPairs["DeepCSV"]=bestDeepCSVPair
                bestJetPairs["DeepFlavour"]=bestDeepFlavourPair
                print ("bestJetPairs AK4--->", bestJetPairs, wp)
                print ("bestJetPairs_deepcsv  AK4--->", bestJetPairs["DeepCSV"][0], bestJetPairs["DeepCSV"][1], wp)
                print ("bestJetPairs_deepflavour  AK4 --->", bestJetPairs["DeepFlavour"][0],bestJetPairs["DeepFlavour"][1], wp)
                # resolved 
                bJets_resolved_PassdeepflavourWP=safeget(bjets_resolved, "DeepFlavour", wp)
                bJets_resolved_PassdeepcsvWP=safeget(bjets_resolved, "DeepCSV", wp)
                # boosted
                bJets_boosted_PassdeepcsvWP=safeget(bjets_boosted, "DeepCSV", wp)

                TwoLeptonsTwoBjets_NoMETCut_Res = {
                    "DeepFlavour{0}".format(wp) :  TwoLeptonsTwoJets_Resolved.refine("TwoLeptonsTwoBjets_NoMETcut_DeepFlavour{0}_{1}_Resolved".format(wp, channel),
                                                                        cut=[ op.rng_len(bJets_resolved_PassdeepflavourWP) > 1 ],
                                                                        weight=([ deepBFlavScaleFactor(bJets_resolved_PassdeepflavourWP[0]), deepBFlavScaleFactor(bJets_resolved_PassdeepflavourWP[1]) ]if isMC else None)),
                    "DeepCSV{0}".format(wp)     :  TwoLeptonsTwoJets_Resolved.refine("TwoLeptonsTwoBjets_NoMETcut_DeepCSV{0}_{1}_Resolved".format(wp, channel), 
                                                                        cut=[ op.rng_len(bJets_resolved_PassdeepcsvWP) > 1 ],
                                                                        weight=([ deepB_AK4ScaleFactor(bJets_resolved_PassdeepcsvWP[0]), deepB_AK4ScaleFactor(bJets_resolved_PassdeepcsvWP[1]) ]if isMC else None))
                                                }


                TwoLeptonsTwoBjets_NoMETCut_Boo = {
                    "DeepCSV{0}".format(wp)     :  TwoLeptonsTwoJets_Boosted.refine("TwoLeptonsTwoBjets_NoMETcut_DeepCSV{0}_{1}_Boosted".format(wp, channel), 
                                                                        cut=[ op.rng_len(bJets_boosted_PassdeepcsvWP) > 1 ]), 
                                                                        # FIXME ! can't pass boosted jets SFs with current version ---> move to v7  
                                                                        #weight=([ deepB_AK8ScaleFactor(bJets_boosted_PassdeepcsvWP[0]), deepB_AK8ScaleFactor(bJets_boosted_PassdeepcsvWP[1]) ]if isMC else None))
                                                }
                
                ## needed to optimize the MET cut 
                # FIXME  Rerun again  &&& pass signal and bkg  
                # The MET cut is passed to TwoLeptonsTwoBjets selection for the # tagger and for the # wp 
                plots.extend(MakeMETPlots(self, TwoLeptonsTwoBjets_NoMETCut_Res, corrMET, MET, channel, "resolved"))
                plots.extend(MakeMETPlots(self, TwoLeptonsTwoBjets_NoMETCut_Boo, corrMET, MET, channel, "boosted"))
                plots.extend(MakeExtraMETPlots(self, TwoLeptonsTwoBjets_NoMETCut_Res, dilepton, MET, channel, "resolved"))
                plots.extend(MakeExtraMETPlots(self, TwoLeptonsTwoBjets_NoMETCut_Boo, dilepton, MET, channel, "boosted"))

                TwoLeptonsTwoBjets_Res = dict((key, selNoMET.refine("TwoLeptonsTwoBjets_{0}_{1}_Resolved".format(key, channel), cut=[ corrMET.pt < 80. ])) for key, selNoMET in TwoLeptonsTwoBjets_NoMETCut_Res.items())
                TwoLeptonsTwoBjets_Boo = dict((key, selNoMET.refine("TwoLeptonsTwoBjets_{0}_{1}_Boosted".format(key, channel), cut=[ corrMET.pt < 80. ])) for key, selNoMET in TwoLeptonsTwoBjets_NoMETCut_Boo.items())
                #plots.extend(MakeDiscriminatorPlots(self, TwoLeptonsTwoBjets_Res, bjets_resolved, wp, channel, "resolved"))
                #plots.extend(MakeDiscriminatorPlots(self, TwoLeptonsTwoBjets_Boo, bjets_boosted, wp, channel, "boosted"))
                
                #plots.extend(makeResolvedBJetPlots(self, TwoLeptonsTwoBjets_Res, bjets_resolved, dilepton, wp, channel))
                #plots.extend(makeBoostedBJetPlots(self, TwoLeptonsTwoBjets_NoMETCut_Boo, bjets_boosted, dilepton, wp, channel))

                # --- to get the Ellipses plots  
                plots.extend(MakeEllipsesPLots(self, TwoLeptonsTwoBjets_Res, bjets_resolved, dilepton, wp, channel, "resolved"))
                plots.extend(MakeEllipsesPLots(self, TwoLeptonsTwoBjets_Boo, bjets_boosted, dilepton, wp, channel, "boosted"))
        
        return plots
Exemple #8
0
    def definePlots(self, tree, noSel, sample=None, sampleCfg=None):
        plots = []

        muons = op.sort(op.select(tree.Muon, lambda mu : op.AND(
            mu.pt > 5,
            op.abs(mu.eta) < 2.4,
            op.abs(mu.pfRelIso04_all) < 0.40,
            op.abs(mu.dxy) < 0.5,
            op.abs(mu.dz ) < 1.,
            op.sqrt(mu.dxy**2 + mu.dz**2)/op.sqrt(mu.dxyErr**2+mu.dzErr**2) < 4, ## SIP3D
            )), lambda mu : -mu.pt)
        electrons = op.sort(op.select(tree.Electron, lambda el : op.AND(
            el.pt > 7.,
            op.abs(el.eta) < 2.5,
            op.abs(el.pfRelIso03_all) < 0.40,
            op.abs(el.dxy) < 0.5,
            op.abs(el.dz ) < 1.,
            op.sqrt(el.dxy**2 + el.dz**2)/op.sqrt(el.dxyErr**2+el.dzErr**2) < 4, ## SIP3D
            )), lambda el : -el.pt)

        plots += self.controlPlots_2l(noSel, muons, electrons)

        mZ = 91.1876

        def reco_4l(leptons, lName, baseSel):
            ## select events with four leptons, and find the best Z candidate
            ## shared between 4el and 4mu
            has4l = baseSel.refine(f"has4{lName}", cut=[
                op.rng_len(leptons) == 4,
                op.rng_sum(leptons, lambda l : l.charge) == 0,
                ])
            allZcand = op.combine(leptons, N=2, pred=lambda l1,l2 : l1.charge != l2.charge)
            bestZ = op.rng_min_element_by(allZcand, lambda ll : op.abs(op.invariant_mass(ll[0].p4, ll[1].p4)-mZ))
            otherLeptons = op.select(leptons, partial(lambda l,oz=None : op.AND(l.idx != oz[0].idx, l.idx != oz[1].idx), oz=bestZ))
            return has4l, bestZ, otherLeptons

        ## Mixed category: take leading two for each (as in the other implementations
        def cuts2lMixed(leptons):
            return [ op.rng_len(leptons) == 2,
                     leptons[0].charge != leptons[1].charge,
                     leptons[0].pt > 20.,
                     leptons[1].pt > 10.
                   ]
        has4lMixed = noSel.refine(f"has4lMixed", cut=cuts2lMixed(muons)+cuts2lMixed(electrons))
        mixed_mElEl = op.invariant_mass(electrons[0].p4, electrons[1].p4)
        mixed_mMuMu = op.invariant_mass(muons[0].p4, muons[1].p4)
        ## two categories: elel closest to Z or mumu closest to Z
        has2El2Mu = has4lMixed.refine(f"has2El2Mu", cut=(op.abs(mixed_mElEl-mZ) < op.abs(mixed_mMuMu-mZ)))
        has2Mu2El = has4lMixed.refine(f"has2Mu2El", cut=(op.abs(mixed_mElEl-mZ) > op.abs(mixed_mMuMu-mZ)))

        mH_cats = []
        for catNm, (has4l, bestZ, otherZ) in {
                "4Mu" : reco_4l(muons    , "Mu", noSel),
                "4El" : reco_4l(electrons, "El", noSel),
                "2El2Mu" : (has2El2Mu, electrons, muons),
                "2Mu2El" : (has2Mu2El, muons, electrons)
                }.items():
            bestZp4  = bestZ[0].p4  + bestZ[1].p4
            otherZp4 = otherZ[0].p4 + otherZ[1].p4
            hasZZ = has4l.refine(f"{has4l.name}ZZ", cut=[
                op.deltaR(bestZ[0].p4 , bestZ[1].p4 ) > 0.02,
                op.deltaR(otherZ[0].p4, otherZ[1].p4) > 0.02,
                op.in_range(40., bestZp4.M(), 120.),
                op.in_range(12., otherZp4.M(), 120.)
                ])
            plots += self.controlPlots_4l(hasZZ, bestZ, otherZ)
            m4l = (bestZ[0].p4+bestZ[1].p4+otherZ[0].p4+otherZ[1].p4).M()
            hasZZ_m4l70 = hasZZ.refine(f"{hasZZ.name}m4l70", cut=(m4l > 70.))
            p_mH = Plot.make1D(f"H_mass_{catNm}", m4l, hasZZ_m4l70, EqBin(36, 70., 180.),
                    plotopts={"show-overflow": False, "log-y": False, "y-axis-range": [0., 18.]})
            mH_cats.append(p_mH)
            plots.append(p_mH)
        plots.append(SummedPlot("H_mass", mH_cats))

        return plots