class T2Study(MriStudy, metaclass=StudyMetaClass): desc = "T2-weighted MRI contrast" add_data_specs = [ FilesetSpec('wm_seg', nifti_gz_format, 'segmentation_pipeline')] add_param_specs = [ SwitchSpec('bet_robust', True), ParamSpec('bet_f_threshold', 0.5), ParamSpec('bet_reduce_bias', False)] default_bids_inputs = [ BidsInputs(spec_name='magnitude', type='T2w', valid_formats=(nifti_gz_x_format, nifti_gz_format))] def segmentation_pipeline(self, img_type=2, **name_maps): pipeline = self.new_pipeline( name='FAST_segmentation', name_maps=name_maps, desc="White matter segmentation of the reference image", citations=[fsl_cite]) fast = pipeline.add( 'fast', fsl.FAST( img_type=img_type, segments=True, out_basename='Reference_segmentation', output_type='NIFTI_GZ'), inputs={ 'in_files': ('brain', nifti_gz_format)}, requirements=[fsl_req.v('5.0.9')]) # Determine output field of split to use if img_type == 1: split_output = 'out3' elif img_type == 2: split_output = 'out2' else: raise BananaUsageError( "'img_type' parameter can either be 1 or 2 (not {})" .format(img_type)) pipeline.add( 'split', Split( splits=[1, 1, 1], squeeze=True), inputs={ 'inlist': (fast, 'tissue_class_files')}, outputs={ 'wm_seg': (split_output, nifti_gz_format)}) return pipeline
class T1Study(T2Study, metaclass=StudyMetaClass): desc = "T1-weighted MRI contrast" add_data_specs = [ FilesetSpec('fs_recon_all', zip_format, 'freesurfer_pipeline'), InputFilesetSpec( 't2_coreg', STD_IMAGE_FORMATS, optional=True, desc=("A coregistered T2 image to use in freesurfer to help " "distinguish the peel surface")), # Templates InputFilesetSpec('suit_mask', STD_IMAGE_FORMATS, frequency='per_study', default=LocalReferenceData('SUIT', nifti_format)), FilesetSpec('five_tissue_type', mrtrix_image_format, 'gen_5tt_pipeline', desc=("A segmentation image taken from freesurfer output " "and simplified into 5 tissue types. Used in ACT " "streamlines tractography")) ] + [ FilesetSpec('aparc_stats_{}_{}_table'.format(h, m), text_format, 'aparc_stats_table_pipeline', frequency='per_visit', pipeline_args={ 'hemisphere': h, 'measure': m }, desc=("Table of {} of {} per parcellated segment".format( m, h.upper()))) for h, m in itertools.product( ('lh', 'rh'), ('volume', 'thickness', 'thicknessstd', 'meancurv', 'gauscurv', 'foldind', 'curvind')) ] add_param_specs = [ # MriStudy.param_spec('bet_method').with_new_choices(default='opti_bet'), SwitchSpec('bet_robust', False), SwitchSpec('bet_reduce_bias', True), SwitchSpec('aparc_atlas', 'desikan-killiany', choices=('desikan-killiany', 'destrieux', 'DKT')), ParamSpec('bet_f_threshold', 0.1), ParamSpec('bet_g_threshold', 0.0) ] default_bids_inputs = [ BidsInputs(spec_name='magnitude', type='T1w', valid_formats=(nifti_gz_x_format, nifti_gz_format)) ] def freesurfer_pipeline(self, **name_maps): """ Segments grey matter, white matter and CSF from T1 images using SPM "NewSegment" function. NB: Default values come from the W2MHS toolbox """ pipeline = self.new_pipeline(name='segmentation', name_maps=name_maps, desc="Segment white/grey matter and csf", citations=copy(freesurfer_cites)) # FS ReconAll node recon_all = pipeline.add( 'recon_all', interface=ReconAll(directive='all', openmp=self.processor.num_processes), inputs={'T1_files': ('mag_preproc', nifti_gz_format)}, requirements=[freesurfer_req.v('5.3')], wall_time=2000) if self.provided('t2_coreg'): pipeline.connect_input('t2_coreg', recon_all, 'T2_file', nifti_gz_format) recon_all.inputs.use_T2 = True # Wrapper around os.path.join pipeline.add('join', JoinPath(), inputs={ 'dirname': (recon_all, 'subjects_dir'), 'filename': (recon_all, 'subject_id') }, outputs={'fs_recon_all': ('path', directory_format)}) return pipeline def segmentation_pipeline(self, **name_maps): pipeline = super(T1Study, self).segmentation_pipeline(img_type=1, **name_maps) return pipeline def gen_5tt_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='gen5tt', name_maps=name_maps, desc=("Generate 5-tissue-type image used for Anatomically-" "Constrained Tractography (ACT)")) aseg_path = pipeline.add( 'aseg_path', AppendPath(sub_paths=['mri', 'aseg.mgz']), inputs={'base_path': ('fs_recon_all', directory_format)}) pipeline.add( 'gen5tt', mrtrix3.Generate5tt(algorithm='freesurfer', out_file='5tt.mif'), inputs={'in_file': (aseg_path, 'out_path')}, outputs={'five_tissue_type': ('out_file', mrtrix_image_format)}, requirements=[mrtrix_req.v('3.0rc3'), freesurfer_req.v('6.0')]) return pipeline def aparc_stats_table_pipeline(self, measure, hemisphere, **name_maps): pipeline = self.new_pipeline( name='aparc_stats_{}_{}'.format(hemisphere, measure), name_maps=name_maps, desc=("Extract statistics from freesurfer outputs")) copy_to_dir = pipeline.add('copy_to_subjects_dir', CopyToDir(), inputs={ 'in_files': ('fs_recon_all', directory_format), 'file_names': (self.SUBJECT_ID, int) }, joinsource=self.SUBJECT_ID, joinfield=['in_files', 'file_names']) if self.branch('aparc_atlas', 'desikan-killiany'): parc = 'aparc' elif self.branch('aparc_atlas', 'destrieux'): parc = 'aparc.a2009s' elif self.branch('aparc_atlas', 'DKT'): parc = 'aparc.DKTatlas40' else: self.unhandled_branch('aparc_atlas') pipeline.add('aparc_stats', AparcStats(measure=measure, hemisphere=hemisphere, parc=parc), inputs={ 'subjects_dir': (copy_to_dir, 'out_dir'), 'subjects': (copy_to_dir, 'file_names') }, outputs={ 'aparc_stats_{}_{}_table'.format(hemisphere, measure): ('tablefile', text_format) }, requirements=[freesurfer_req.v('5.3')]) return pipeline def bet_T1(self, **name_maps): pipeline = self.new_pipeline( name='BET_T1', name_maps=name_maps, desc=("Brain extraction pipeline using FSL's BET"), citations=[fsl_cite]) bias = pipeline.add('n4_bias_correction', ants.N4BiasFieldCorrection(), inputs={'input_image': ('t1', nifti_gz_format)}, requirements=[ants_req.v('1.9')], wall_time=60, mem_gb=12) pipeline.add('bet', fsl.BET(frac=0.15, reduce_bias=True, output_type='NIFTI_GZ'), inputs={'in_file': (bias, 'output_image')}, outputs={ 'betted_T1': ('out_file', nifti_gz_format), 'betted_T1_mask': ('mask_file', nifti_gz_format) }, requirements=[fsl_req.v('5.0.8')], mem_gb=8, wall_time=45) return pipeline def cet_T1(self, **name_maps): pipeline = self.new_pipeline( name='CET_T1', name_maps=name_maps, desc=("Construct cerebellum mask using SUIT template"), citations=[fsl_cite]) # FIXME: Should convert to inputs nl = self._lookup_nl_tfm_inv_name('MNI') linear = self._lookup_l_tfm_to_name('MNI') # Initially use MNI space to warp SUIT into T1 and threshold to mask merge_trans = pipeline.add('merge_transforms', Merge(2), inputs={ 'in2': (nl, nifti_gz_format), 'in1': (linear, nifti_gz_format) }) apply_trans = pipeline.add('ApplyTransform', ants.resampling.ApplyTransforms( interpolation='NearestNeighbor', input_image_type=3, invert_transform_flags=[True, False]), inputs={ 'reference_image': ('betted_T1', nifti_gz_format), 'input_image': ('suit_mask', nifti_gz_format), 'transforms': (merge_trans, 'out') }, requirements=[ants_req.v('1.9')], mem_gb=16, wall_time=120) pipeline.add('maths2', fsl.utils.ImageMaths(suffix='_optiBET_cerebellum', op_string='-mas'), inputs={ 'in_file': ('betted_T1', nifti_gz_format), 'in_file2': (apply_trans, 'output_image') }, outputs={ 'cetted_T1': ('out_file', nifti_gz_format), 'cetted_T1_mask': ('output_image', nifti_gz_format) }, requirements=[fsl_req.v('5.0.8')], mem_gb=16, wall_time=5) return pipeline
class T1Study(T2Study, metaclass=StudyMetaClass): desc = "T1-weighted MRI contrast" add_data_specs = [ FilesetSpec('fs_recon_all', zip_format, 'freesurfer_pipeline'), InputFilesetSpec( 't2_coreg', STD_IMAGE_FORMATS, optional=True, desc=("A coregistered T2 image to use in freesurfer to help " "distinguish the peel surface")), # Templates InputFilesetSpec('suit_mask', STD_IMAGE_FORMATS, frequency='per_study', default=LocalReferenceData('SUIT', nifti_format)), FilesetSpec('five_tissue_type', mrtrix_image_format, 'gen_5tt_pipeline', desc=("A segmentation image taken from freesurfer output " "and simplified into 5 tissue types. Used in ACT " "streamlines tractography")) ] + [ FilesetSpec('aparc_stats_{}_{}_table'.format(h, m), text_format, 'aparc_stats_table_pipeline', frequency='per_visit', pipeline_args={ 'hemisphere': h, 'measure': m }, desc=("Table of {} of {} per parcellated segment".format( m, h.upper()))) for h, m in itertools.product( ('lh', 'rh'), ('volume', 'thickness', 'thicknessstd', 'meancurv', 'gauscurv', 'foldind', 'curvind')) ] add_param_specs = [ # MriStudy.param_spec('bet_method').with_new_choices(default='opti_bet'), SwitchSpec('bet_robust', False), SwitchSpec('bet_reduce_bias', True), SwitchSpec('aparc_atlas', 'desikan-killiany', choices=('desikan-killiany', 'destrieux', 'DKT')), ParamSpec('bet_f_threshold', 0.1), ParamSpec('bet_g_threshold', 0.0) ] default_bids_inputs = [ BidsInputs(spec_name='magnitude', type='T1w', valid_formats=(nifti_gz_x_format, nifti_gz_format)) ] primary_scan_name = 'magnitude' def freesurfer_pipeline(self, **name_maps): """ Segments grey matter, white matter and CSF from T1 images using SPM "NewSegment" function. NB: Default values come from the W2MHS toolbox """ pipeline = self.new_pipeline(name='segmentation', name_maps=name_maps, desc="Segment white/grey matter and csf", citations=copy(freesurfer_cites)) # FS ReconAll node recon_all = pipeline.add( 'recon_all', interface=ReconAll(directive='all', openmp=self.processor.num_processes), inputs={'T1_files': (self.preproc_spec_name, nifti_gz_format)}, requirements=[freesurfer_req.v('5.3')], wall_time=2000) if self.provided('t2_coreg'): pipeline.connect_input('t2_coreg', recon_all, 'T2_file', nifti_gz_format) recon_all.inputs.use_T2 = True # Wrapper around os.path.join pipeline.add('join', JoinPath(), inputs={ 'dirname': (recon_all, 'subjects_dir'), 'filename': (recon_all, 'subject_id') }, outputs={'fs_recon_all': ('path', directory_format)}) return pipeline def segmentation_pipeline(self, **name_maps): pipeline = super(T1Study, self).segmentation_pipeline(img_type=1, **name_maps) return pipeline def gen_5tt_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='gen5tt', name_maps=name_maps, desc=("Generate 5-tissue-type image used for Anatomically-" "Constrained Tractography (ACT)")) aseg_path = pipeline.add( 'aseg_path', AppendPath(sub_paths=['mri', 'aseg.mgz']), inputs={'base_path': ('fs_recon_all', directory_format)}) pipeline.add( 'gen5tt', mrtrix3.Generate5tt(algorithm='freesurfer', out_file='5tt.mif'), inputs={'in_file': (aseg_path, 'out_path')}, outputs={'five_tissue_type': ('out_file', mrtrix_image_format)}, requirements=[mrtrix_req.v('3.0rc3'), freesurfer_req.v('6.0')]) return pipeline def aparc_stats_table_pipeline(self, measure, hemisphere, **name_maps): pipeline = self.new_pipeline( name='aparc_stats_{}_{}'.format(hemisphere, measure), name_maps=name_maps, desc=("Extract statistics from freesurfer outputs")) copy_to_dir = pipeline.add('copy_to_subjects_dir', CopyToDir(), inputs={ 'in_files': ('fs_recon_all', directory_format), 'file_names': (self.SUBJECT_ID, int) }, joinsource=self.SUBJECT_ID, joinfield=['in_files', 'file_names']) if self.branch('aparc_atlas', 'desikan-killiany'): parc = 'aparc' elif self.branch('aparc_atlas', 'destrieux'): parc = 'aparc.a2009s' elif self.branch('aparc_atlas', 'DKT'): parc = 'aparc.DKTatlas40' else: self.unhandled_branch('aparc_atlas') pipeline.add('aparc_stats', AparcStats(measure=measure, hemisphere=hemisphere, parc=parc), inputs={ 'subjects_dir': (copy_to_dir, 'out_dir'), 'subjects': (copy_to_dir, 'file_names') }, outputs={ 'aparc_stats_{}_{}_table'.format(hemisphere, measure): ('tablefile', text_format) }, requirements=[freesurfer_req.v('5.3')]) return pipeline
class BoldStudy(EpiSeriesStudy, metaclass=StudyMetaClass): desc = "Functional MRI BOLD MRI contrast" add_data_specs = [ InputFilesetSpec('train_data', rfile_format, optional=True, frequency='per_study'), FilesetSpec('hand_label_noise', text_format, 'fix_preparation_pipeline'), FilesetSpec('labelled_components', text_format, 'fix_classification_pipeline'), FilesetSpec('cleaned_file', nifti_gz_format, 'fix_regression_pipeline'), FilesetSpec('filtered_data', nifti_gz_format, 'rsfMRI_filtering_pipeline'), FilesetSpec('mc_par', par_format, 'rsfMRI_filtering_pipeline'), FilesetSpec('melodic_ica', zip_format, 'single_subject_melodic_pipeline'), FilesetSpec('fix_dir', zip_format, 'fix_preparation_pipeline'), FilesetSpec('normalized_ts', nifti_gz_format, 'timeseries_normalization_to_atlas_pipeline'), FilesetSpec('smoothed_ts', nifti_gz_format, 'smoothing_pipeline') ] add_param_specs = [ ParamSpec('component_threshold', 20), ParamSpec('motion_reg', True), ParamSpec('highpass', 0.01), ParamSpec('brain_thresh_percent', 5), ParamSpec('group_ica_components', 15) ] primary_bids_selector = BidsInputs(spec_name='series', type='bold', valid_formats=(nifti_gz_x_format, nifti_gz_format)) default_bids_inputs = [ primary_bids_selector, BidsAssocInput(spec_name='field_map_phase', primary=primary_bids_selector, association='phasediff', format=nifti_gz_format, drop_if_missing=True), BidsAssocInput(spec_name='field_map_mag', primary=primary_bids_selector, association='phasediff', type='magnitude', format=nifti_gz_format, drop_if_missing=True) ] def rsfMRI_filtering_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='rsfMRI_filtering', desc=("Spatial and temporal rsfMRI filtering"), citations=[fsl_cite], name_maps=name_maps) afni_mc = pipeline.add( 'AFNI_MC', Volreg(zpad=1, out_file='rsfmri_mc.nii.gz', oned_file='prefiltered_func_data_mcf.par'), inputs={'in_file': ('series_preproc', nifti_gz_format)}, outputs={'mc_par': ('oned_file', par_format)}, wall_time=5, requirements=[afni_req.v('16.2.10')]) filt = pipeline.add('Tproject', Tproject(stopband=(0, 0.01), polort=3, blur=3, out_file='filtered_func_data.nii.gz'), inputs={ 'delta_t': ('tr', float), 'mask': (self.brain_mask_spec_name, nifti_gz_format), 'in_file': (afni_mc, 'out_file') }, wall_time=5, requirements=[afni_req.v('16.2.10')]) meanfunc = pipeline.add('meanfunc', ImageMaths(op_string='-Tmean', suffix='_mean', output_type='NIFTI_GZ'), wall_time=5, inputs={'in_file': (afni_mc, 'out_file')}, requirements=[fsl_req.v('5.0.10')]) pipeline.add('add_mean', ImageMaths(op_string='-add', output_type='NIFTI_GZ'), inputs={ 'in_file': (filt, 'out_file'), 'in_file2': (meanfunc, 'out_file') }, outputs={'filtered_data': ('out_file', nifti_gz_format)}, wall_time=5, requirements=[fsl_req.v('5.0.10')]) return pipeline def single_subject_melodic_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='MelodicL1', desc=("Single subject ICA analysis using FSL MELODIC."), citations=[fsl_cite], name_maps=name_maps) pipeline.add('melodic_L1', MELODIC( no_bet=True, bg_threshold=self.parameter('brain_thresh_percent'), report=True, out_stats=True, mm_thresh=0.5, out_dir='melodic_ica', output_type='NIFTI_GZ'), inputs={ 'mask': (self.brain_mask_spec_name, nifti_gz_format), 'tr_sec': ('tr', float), 'in_files': ('filtered_data', nifti_gz_format) }, outputs={'melodic_ica': ('out_dir', directory_format)}, wall_time=15, requirements=[fsl_req.v('5.0.10')]) return pipeline def fix_preparation_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='prepare_fix', desc=("Pipeline to create the right folder structure before " "running FIX"), citations=[fsl_cite], name_maps=name_maps) if self.branch('coreg_to_tmpl_method', 'ants'): struct_ants2fsl = pipeline.add( 'struct_ants2fsl', ANTs2FSLMatrixConversion(ras2fsl=True), inputs={ 'reference_file': ('template_brain', nifti_gz_format), 'itk_file': ('coreg_to_tmpl_ants_mat', text_matrix_format), 'source_file': ('coreg_ref_brain', nifti_gz_format) }, requirements=[c3d_req.v('1.0.0')]) struct_matrix = (struct_ants2fsl, 'fsl_matrix') else: struct_matrix = ('coreg_to_tmpl_fsl_mat', text_matrix_format) # if self.branch('coreg_method', 'ants'): # epi_ants2fsl = pipeline.add( # 'epi_ants2fsl', # ANTs2FSLMatrixConversion( # ras2fsl=True), # inputs={ # 'source_file': ('brain', nifti_gz_format), # 'itk_file': ('coreg_ants_mat', text_matrix_format), # 'reference_file': ('coreg_ref_brain', nifti_gz_format)}, # requirements=[c3d_req.v('1.0.0')]) MNI2t1 = pipeline.add('MNI2t1', ConvertXFM(invert_xfm=True), inputs={'in_file': struct_matrix}, wall_time=5, requirements=[fsl_req.v('5.0.9')]) struct2epi = pipeline.add( 'struct2epi', ConvertXFM(invert_xfm=True), inputs={'in_file': ('coreg_fsl_mat', text_matrix_format)}, wall_time=5, requirements=[fsl_req.v('5.0.9')]) meanfunc = pipeline.add( 'meanfunc', ImageMaths(op_string='-Tmean', suffix='_mean', output_type='NIFTI_GZ'), inputs={'in_file': ('series_preproc', nifti_gz_format)}, wall_time=5, requirements=[fsl_req.v('5.0.9')]) pipeline.add('prep_fix', PrepareFIX(), inputs={ 'melodic_dir': ('melodic_ica', directory_format), 't1_brain': ('coreg_ref_brain', nifti_gz_format), 'mc_par': ('mc_par', par_format), 'epi_brain_mask': ('brain_mask', nifti_gz_format), 'epi_preproc': ('series_preproc', nifti_gz_format), 'filtered_epi': ('filtered_data', nifti_gz_format), 'epi2t1_mat': ('coreg_fsl_mat', text_matrix_format), 't12MNI_mat': (struct_ants2fsl, 'fsl_matrix'), 'MNI2t1_mat': (MNI2t1, 'out_file'), 't12epi_mat': (struct2epi, 'out_file'), 'epi_mean': (meanfunc, 'out_file') }, outputs={ 'fix_dir': ('fix_dir', directory_format), 'hand_label_noise': ('hand_label_file', text_format) }) return pipeline def fix_classification_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='fix_classification', desc=("Automatic classification of noisy components from the " "rsfMRI data using fsl FIX."), citations=[fsl_cite], name_maps=name_maps) pipeline.add( "fix", FSLFIX(component_threshold=self.parameter('component_threshold'), motion_reg=self.parameter('motion_reg'), classification=True), inputs={ "feat_dir": ("fix_dir", directory_format), "train_data": ("train_data", rfile_format) }, outputs={'labelled_components': ('label_file', text_format)}, wall_time=30, requirements=[fsl_req.v('5.0.9'), fix_req.v('1.0')]) return pipeline def fix_regression_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='signal_regression', desc=("Regression of the noisy components from the rsfMRI data " "using a python implementation equivalent to that in FIX."), citations=[fsl_cite], name_maps=name_maps) pipeline.add( "signal_reg", SignalRegression(motion_regression=self.parameter('motion_reg'), highpass=self.parameter('highpass')), inputs={ "fix_dir": ("fix_dir", directory_format), "labelled_components": ("labelled_components", text_format) }, outputs={'cleaned_file': ('output', nifti_gz_format)}, wall_time=30, requirements=[fsl_req.v('5.0.9'), fix_req.v('1.0')]) return pipeline def timeseries_normalization_to_atlas_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='timeseries_normalization_to_atlas_pipeline', desc=("Apply ANTs transformation to the fmri filtered file to " "normalize it to MNI 2mm."), citations=[fsl_cite], name_maps=name_maps) merge_trans = pipeline.add('merge_transforms', NiPypeMerge(3), inputs={ 'in1': ('coreg_to_tmpl_ants_warp', nifti_gz_format), 'in2': ('coreg_to_tmpl_ants_mat', text_matrix_format), 'in3': ('coreg_matrix', text_matrix_format) }, wall_time=1) pipeline.add( 'ApplyTransform', ApplyTransforms(interpolation='Linear', input_image_type=3), inputs={ 'reference_image': ('template_brain', nifti_gz_format), 'input_image': ('cleaned_file', nifti_gz_format), 'transforms': (merge_trans, 'out') }, outputs={'normalized_ts': ('output_image', nifti_gz_format)}, wall_time=7, mem_gb=24, requirements=[ants_req.v('2')]) return pipeline def smoothing_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='smoothing_pipeline', desc=("Spatial smoothing of the normalized fmri file"), citations=[fsl_cite], name_maps=name_maps) pipeline.add('3dBlurToFWHM', BlurToFWHM(fwhm=5, out_file='smoothed_ts.nii.gz'), inputs={ 'mask': ('template_mask', nifti_gz_format), 'in_file': ('normalized_ts', nifti_gz_format) }, outputs={'smoothed_ts': ('out_file', nifti_gz_format)}, wall_time=5, requirements=[afni_req.v('16.2.10')]) return pipeline
class DwiStudy(EpiSeriesStudy, metaclass=StudyMetaClass): desc = "Diffusion-weighted MRI contrast" add_data_specs = [ InputFilesetSpec('anat_5tt', mrtrix_image_format, desc=("A co-registered segmentation image taken from " "freesurfer output and simplified into 5 tissue" " types. Used in ACT streamlines tractography"), optional=True), InputFilesetSpec('anat_fs_recon_all', zip_format, optional=True, desc=("Co-registered freesurfer recon-all output. " "Used in building the connectome")), InputFilesetSpec('reverse_phase', STD_IMAGE_FORMATS, optional=True), FilesetSpec('grad_dirs', fsl_bvecs_format, 'preprocess_pipeline'), FilesetSpec('grad_dirs_coreg', fsl_bvecs_format, 'series_coreg_pipeline', desc=("The gradient directions coregistered to the " "orientation of the coreg reference")), FilesetSpec('bvalues', fsl_bvals_format, 'preprocess_pipeline', desc=("")), FilesetSpec('eddy_par', eddy_par_format, 'preprocess_pipeline', desc=("")), FilesetSpec('noise_residual', mrtrix_image_format, 'preprocess_pipeline', desc=("")), FilesetSpec('tensor', nifti_gz_format, 'tensor_pipeline', desc=("")), FilesetSpec('fa', nifti_gz_format, 'tensor_metrics_pipeline', desc=("")), FilesetSpec('adc', nifti_gz_format, 'tensor_metrics_pipeline', desc=("")), FilesetSpec('wm_response', text_format, 'response_pipeline', desc=("")), FilesetSpec('gm_response', text_format, 'response_pipeline', desc=("")), FilesetSpec('csf_response', text_format, 'response_pipeline', desc=("")), FilesetSpec('avg_response', text_format, 'average_response_pipeline', desc=("")), FilesetSpec('wm_odf', mrtrix_image_format, 'fod_pipeline', desc=("")), FilesetSpec('gm_odf', mrtrix_image_format, 'fod_pipeline', desc=("")), FilesetSpec('csf_odf', mrtrix_image_format, 'fod_pipeline', desc=("")), FilesetSpec('norm_intensity', mrtrix_image_format, 'intensity_normalisation_pipeline', desc=("")), FilesetSpec('norm_intens_fa_template', mrtrix_image_format, 'intensity_normalisation_pipeline', frequency='per_study', desc=("")), FilesetSpec('norm_intens_wm_mask', mrtrix_image_format, 'intensity_normalisation_pipeline', frequency='per_study', desc=("")), FilesetSpec('global_tracks', mrtrix_track_format, 'global_tracking_pipeline', desc=("")), FilesetSpec('wm_mask', mrtrix_image_format, 'global_tracking_pipeline', desc=("")), FilesetSpec('connectome', csv_format, 'connectome_pipeline', desc=(""))] add_param_specs = [ ParamSpec('multi_tissue', True, desc=("")), ParamSpec('preproc_pe_dir', None, dtype=str, desc=("")), ParamSpec('tbss_skel_thresh', 0.2, desc=("")), ParamSpec('fsl_mask_f', 0.25, desc=("")), ParamSpec('bet_robust', True, desc=("")), ParamSpec('bet_f_threshold', 0.2, desc=("")), ParamSpec('bet_reduce_bias', False, desc=("")), ParamSpec('num_global_tracks', int(1e9), desc=("")), ParamSpec('global_tracks_cutoff', 0.05, desc=("")), SwitchSpec('preproc_denoise', False, desc=("")), SwitchSpec('response_algorithm', 'tax', ('tax', 'dhollander', 'msmt_5tt'), desc=("")), SwitchSpec('fod_algorithm', 'csd', ('csd', 'msmt_csd'), desc=("")), MriStudy.param_spec('bet_method').with_new_choices('mrtrix'), SwitchSpec('reorient2std', False, desc=(""))] primary_bids_input = BidsInputs( spec_name='series', type='dwi', valid_formats=(nifti_gz_x_format, nifti_gz_format)) default_bids_inputs = [primary_bids_input, BidsAssocInputs( spec_name='bvalues', primary=primary_bids_input, association='grads', type='bval', format=fsl_bvals_format), BidsAssocInputs( spec_name='grad_dirs', primary=primary_bids_input, association='grads', type='bvec', format=fsl_bvecs_format), BidsAssocInputs( spec_name='reverse_phase', primary=primary_bids_input, association='epi', format=nifti_gz_format, drop_if_missing=True)] RECOMMENDED_NUM_SESSIONS_FOR_INTENS_NORM = 5 primary_scan_name = 'series' @property def multi_tissue(self): return self.branch('response_algorithm', ('msmt_5tt', 'dhollander')) def fsl_grads(self, pipeline, coregistered=True): "Adds and returns a node to the pipeline to merge the FSL grads and " "bvecs" try: fslgrad = pipeline.node('fslgrad') except ArcanaNameError: if self.is_coregistered and coregistered: grad_dirs = 'grad_dirs_coreg' else: grad_dirs = 'grad_dirs' # Gradient merge node fslgrad = pipeline.add( "fslgrad", MergeTuple(2), inputs={ 'in1': (grad_dirs, fsl_bvecs_format), 'in2': ('bvalues', fsl_bvals_format)}) return (fslgrad, 'out') def extract_magnitude_pipeline(self, **name_maps): pipeline = self.new_pipeline( 'extract_magnitude', desc="Extracts the first b==0 volume from the series", citations=[], name_maps=name_maps) dwiextract = pipeline.add( 'dwiextract', ExtractDWIorB0( bzero=True, out_ext='.nii.gz'), inputs={ 'in_file': ('series', nifti_gz_format), 'fslgrad': self.fsl_grads(pipeline, coregistered=False)}, requirements=[mrtrix_req.v('3.0rc3')]) pipeline.add( "extract_first_vol", MRConvert( coord=(3, 0)), inputs={ 'in_file': (dwiextract, 'out_file')}, outputs={ 'magnitude': ('out_file', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) return pipeline def preprocess_pipeline(self, **name_maps): """ Performs a series of FSL preprocessing steps, including Eddy and Topup Parameters ---------- phase_dir : str{AP|LR|IS} The phase encode direction """ # Determine whether we can correct for distortion, i.e. if reference # scans are provided # Include all references references = [fsl_cite, eddy_cite, topup_cite, distort_correct_cite, n4_cite] if self.branch('preproc_denoise'): references.extend(dwidenoise_cites) pipeline = self.new_pipeline( name='preprocess', name_maps=name_maps, desc=( "Preprocess dMRI studies using distortion correction"), citations=references) # Create nodes to gradients to FSL format if self.input('series').format == dicom_format: extract_grad = pipeline.add( "extract_grad", ExtractFSLGradients(), inputs={ 'in_file': ('series', dicom_format)}, outputs={ 'grad_dirs': ('bvecs_file', fsl_bvecs_format), 'bvalues': ('bvals_file', fsl_bvals_format)}, requirements=[mrtrix_req.v('3.0rc3')]) grad_fsl_inputs = {'in1': (extract_grad, 'bvecs_file'), 'in2': (extract_grad, 'bvals_file')} elif self.provided('grad_dirs') and self.provided('bvalues'): grad_fsl_inputs = {'in1': ('grad_dirs', fsl_bvecs_format), 'in2': ('bvalues', fsl_bvals_format)} else: raise BananaUsageError( "Either input 'magnitude' image needs to be in DICOM format " "or gradient directions and b-values need to be explicitly " "provided to {}".format(self)) # Gradient merge node grad_fsl = pipeline.add( "grad_fsl", MergeTuple(2), inputs=grad_fsl_inputs) gradients = (grad_fsl, 'out') # Create node to reorient preproc out_file if self.branch('reorient2std'): reorient = pipeline.add( 'fslreorient2std', fsl.utils.Reorient2Std( output_type='NIFTI_GZ'), inputs={ 'in_file': ('series', nifti_gz_format)}, requirements=[fsl_req.v('5.0.9')]) reoriented = (reorient, 'out_file') else: reoriented = ('series', nifti_gz_format) # Denoise the dwi-scan if self.branch('preproc_denoise'): # Run denoising denoise = pipeline.add( 'denoise', DWIDenoise(), inputs={ 'in_file': reoriented}, requirements=[mrtrix_req.v('3.0rc3')]) # Calculate residual noise subtract_operands = pipeline.add( 'subtract_operands', Merge(2), inputs={ 'in1': reoriented, 'in2': (denoise, 'noise')}) pipeline.add( 'subtract', MRCalc( operation='subtract'), inputs={ 'operands': (subtract_operands, 'out')}, outputs={ 'noise_residual': ('out_file', mrtrix_image_format)}, requirements=[mrtrix_req.v('3.0rc3')]) denoised = (denoise, 'out_file') else: denoised = reoriented # Preproc kwargs preproc_kwargs = {} preproc_inputs = {'in_file': denoised, 'grad_fsl': gradients} if self.provided('reverse_phase'): if self.provided('magnitude', default_okay=False): dwi_reference = ('magnitude', mrtrix_image_format) else: # Extract b=0 volumes dwiextract = pipeline.add( 'dwiextract', ExtractDWIorB0( bzero=True, out_ext='.nii.gz'), inputs={ 'in_file': denoised, 'fslgrad': gradients}, requirements=[mrtrix_req.v('3.0rc3')]) # Get first b=0 from dwi b=0 volumes extract_first_b0 = pipeline.add( "extract_first_vol", MRConvert( coord=(3, 0)), inputs={ 'in_file': (dwiextract, 'out_file')}, requirements=[mrtrix_req.v('3.0rc3')]) dwi_reference = (extract_first_b0, 'out_file') # Concatenate extracted forward rpe with reverse rpe combined_images = pipeline.add( 'combined_images', MRCat(), inputs={ 'first_scan': dwi_reference, 'second_scan': ('reverse_phase', mrtrix_image_format)}, requirements=[mrtrix_req.v('3.0rc3')]) # Create node to assign the right PED to the diffusion prep_dwi = pipeline.add( 'prepare_dwi', PrepareDWI(), inputs={ 'pe_dir': ('ped', float), 'ped_polarity': ('pe_angle', float)}) preproc_kwargs['rpe_pair'] = True distortion_correction = True preproc_inputs['se_epi'] = (combined_images, 'out_file') else: distortion_correction = False preproc_kwargs['rpe_none'] = True if self.parameter('preproc_pe_dir') is not None: preproc_kwargs['pe_dir'] = self.parameter('preproc_pe_dir') preproc = pipeline.add( 'dwipreproc', DWIPreproc( no_clean_up=True, out_file_ext='.nii.gz', # FIXME: Need to determine this programmatically # eddy_parameters = '--data_is_shelled ' temp_dir='dwipreproc_tempdir', **preproc_kwargs), inputs=preproc_inputs, outputs={ 'eddy_par': ('eddy_parameters', eddy_par_format)}, requirements=[mrtrix_req.v('3.0rc3'), fsl_req.v('5.0.10')], wall_time=60) if distortion_correction: pipeline.connect(prep_dwi, 'pe', preproc, 'pe_dir') mask = pipeline.add( 'dwi2mask', BrainMask( out_file='brainmask.nii.gz'), inputs={ 'in_file': (preproc, 'out_file'), 'grad_fsl': gradients}, requirements=[mrtrix_req.v('3.0rc3')]) # Create bias correct node pipeline.add( "bias_correct", DWIBiasCorrect( method='ants'), inputs={ 'grad_fsl': gradients, # internal 'in_file': (preproc, 'out_file'), 'mask': (mask, 'out_file')}, outputs={ 'series_preproc': ('out_file', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3'), ants_req.v('2.0')]) return pipeline def brain_extraction_pipeline(self, **name_maps): """ Generates a whole brain mask using MRtrix's 'dwi2mask' command Parameters ---------- mask_tool: Str Can be either 'bet' or 'dwi2mask' depending on which mask tool you want to use """ if self.branch('bet_method', 'mrtrix'): pipeline = self.new_pipeline( 'brain_extraction', desc="Generate brain mask from b0 images", citations=[mrtrix_cite], name_maps=name_maps) if self.provided('coreg_ref'): series = 'series_coreg' else: series = 'series_preproc' # Create mask node masker = pipeline.add( 'dwi2mask', BrainMask( out_file='brain_mask.nii.gz'), inputs={ 'in_file': (series, nifti_gz_format), 'grad_fsl': self.fsl_grads(pipeline, coregistered=False)}, outputs={ 'brain_mask': ('out_file', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) merge = pipeline.add( 'merge_operands', Merge(2), inputs={ 'in1': ('mag_preproc', nifti_gz_format), 'in2': (masker, 'out_file')}) pipeline.add( 'apply_mask', MRCalc( operation='multiply'), inputs={ 'operands': (merge, 'out')}, outputs={ 'brain': ('out_file', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) else: pipeline = super().brain_extraction_pipeline(**name_maps) return pipeline def series_coreg_pipeline(self, **name_maps): pipeline = super().series_coreg_pipeline(**name_maps) # Apply coregistration transform to gradients pipeline.add( 'transform_grads', TransformGradients(), inputs={ 'gradients': ('grad_dirs', fsl_bvecs_format), 'transform': ('coreg_fsl_mat', text_matrix_format)}, outputs={ 'grad_dirs_coreg': ('transformed', fsl_bvecs_format)}) return pipeline def intensity_normalisation_pipeline(self, **name_maps): if self.num_sessions < 2: raise ArcanaMissingDataException( "Cannot normalise intensities of DWI images as study only " "contains a single session") elif self.num_sessions < self.RECOMMENDED_NUM_SESSIONS_FOR_INTENS_NORM: logger.warning( "The number of sessions in the study ({}) is less than the " "recommended number for intensity normalisation ({}). The " "results may be unreliable".format( self.num_sessions, self.RECOMMENDED_NUM_SESSIONS_FOR_INTENS_NORM)) pipeline = self.new_pipeline( name='intensity_normalization', desc="Corrects for B1 field inhomogeneity", citations=[mrtrix_req.v('3.0rc3')], name_maps=name_maps) mrconvert = pipeline.add( 'mrconvert', MRConvert( out_ext='.mif'), inputs={ 'in_file': (self.series_preproc_spec_name, nifti_gz_format), 'grad_fsl': self.fsl_grads(pipeline)}, requirements=[mrtrix_req.v('3.0rc3')]) # Pair subject and visit ids together, expanding so they can be # joined and chained together session_ids = pipeline.add( 'session_ids', utility.IdentityInterface( ['subject_id', 'visit_id']), inputs={ 'subject_id': (Study.SUBJECT_ID, int), 'visit_id': (Study.VISIT_ID, int)}) # Set up join nodes join_fields = ['dwis', 'masks', 'subject_ids', 'visit_ids'] join_over_subjects = pipeline.add( 'join_over_subjects', utility.IdentityInterface( join_fields), inputs={ 'masks': (self.brain_mask_spec_name, nifti_gz_format), 'dwis': (mrconvert, 'out_file'), 'subject_ids': (session_ids, 'subject_id'), 'visit_ids': (session_ids, 'visit_id')}, joinsource=self.SUBJECT_ID, joinfield=join_fields) join_over_visits = pipeline.add( 'join_over_visits', Chain( join_fields), inputs={ 'dwis': (join_over_subjects, 'dwis'), 'masks': (join_over_subjects, 'masks'), 'subject_ids': (join_over_subjects, 'subject_ids'), 'visit_ids': (join_over_subjects, 'visit_ids')}, joinsource=self.VISIT_ID, joinfield=join_fields) # Intensity normalization intensity_norm = pipeline.add( 'dwiintensitynorm', DWIIntensityNorm(), inputs={ 'in_files': (join_over_visits, 'dwis'), 'masks': (join_over_visits, 'masks')}, outputs={ 'norm_intens_fa_template': ('fa_template', mrtrix_image_format), 'norm_intens_wm_mask': ('wm_mask', mrtrix_image_format)}, requirements=[mrtrix_req.v('3.0rc3')]) # Set up expand nodes pipeline.add( 'expand', SelectSession(), inputs={ 'subject_ids': (join_over_visits, 'subject_ids'), 'visit_ids': (join_over_visits, 'visit_ids'), 'inlist': (intensity_norm, 'out_files'), 'subject_id': (Study.SUBJECT_ID, int), 'visit_id': (Study.VISIT_ID, int)}, outputs={ 'norm_intensity': ('item', mrtrix_image_format)}) # Connect inputs return pipeline def tensor_pipeline(self, **name_maps): """ Fits the apparrent diffusion tensor (DT) to each voxel of the image """ pipeline = self.new_pipeline( name='tensor', desc=("Estimates the apparent diffusion tensor in each " "voxel"), citations=[], name_maps=name_maps) # Create tensor fit node pipeline.add( 'dwi2tensor', FitTensor( out_file='dti.nii.gz'), inputs={ 'grad_fsl': self.fsl_grads(pipeline), 'in_file': (self.series_preproc_spec_name, nifti_gz_format), 'in_mask': (self.brain_mask_spec_name, nifti_gz_format)}, outputs={ 'tensor': ('out_file', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) return pipeline def tensor_metrics_pipeline(self, **name_maps): """ Fits the apparrent diffusion tensor (DT) to each voxel of the image """ pipeline = self.new_pipeline( name='fa', desc=("Calculates the FA and ADC from a tensor image"), citations=[], name_maps=name_maps) # Create tensor fit node pipeline.add( 'metrics', TensorMetrics( out_fa='fa.nii.gz', out_adc='adc.nii.gz'), inputs={ 'in_file': ('tensor', nifti_gz_format), 'in_mask': (self.brain_mask_spec_name, nifti_gz_format)}, outputs={ 'fa': ('out_fa', nifti_gz_format), 'adc': ('out_adc', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) return pipeline def response_pipeline(self, **name_maps): """ Estimates the fibre orientation distribution (FOD) using constrained spherical deconvolution Parameters ---------- response_algorithm : str Algorithm used to estimate the response """ pipeline = self.new_pipeline( name='response', desc=("Estimates the fibre response function"), citations=[mrtrix_cite], name_maps=name_maps) # Create fod fit node response = pipeline.add( 'response', ResponseSD( algorithm=self.parameter('response_algorithm')), inputs={ 'grad_fsl': self.fsl_grads(pipeline), 'in_file': (self.series_preproc_spec_name, nifti_gz_format), 'in_mask': (self.brain_mask_spec_name, nifti_gz_format)}, outputs={ 'wm_response': ('wm_file', text_format)}, requirements=[mrtrix_req.v('3.0rc3')]) # Connect to outputs if self.multi_tissue: response.inputs.gm_file = 'gm.txt', response.inputs.csf_file = 'csf.txt', pipeline.connect_output('gm_response', response, 'gm_file', text_format) pipeline.connect_output('csf_response', response, 'csf_file', text_format) return pipeline def average_response_pipeline(self, **name_maps): """ Averages the estimate response function over all subjects in the project """ pipeline = self.new_pipeline( name='average_response', desc=( "Averages the fibre response function over the project"), citations=[mrtrix_cite], name_maps=name_maps) join_subjects = pipeline.add( 'join_subjects', utility.IdentityInterface(['responses']), inputs={ 'responses': ('wm_response', text_format)}, outputs={}, joinsource=self.SUBJECT_ID, joinfield=['responses']) join_visits = pipeline.add( 'join_visits', Chain(['responses']), inputs={ 'responses': (join_subjects, 'responses')}, joinsource=self.VISIT_ID, joinfield=['responses']) pipeline.add( 'avg_response', AverageResponse(), inputs={ 'in_files': (join_visits, 'responses')}, outputs={ 'avg_response': ('out_file', text_format)}, requirements=[mrtrix_req.v('3.0rc3')]) return pipeline def fod_pipeline(self, **name_maps): """ Estimates the fibre orientation distribution (FOD) using constrained spherical deconvolution Parameters ---------- """ pipeline = self.new_pipeline( name='fod', desc=("Estimates the fibre orientation distribution in each" " voxel"), citations=[mrtrix_cite], name_maps=name_maps) # Create fod fit node dwi2fod = pipeline.add( 'dwi2fod', EstimateFOD( algorithm=self.parameter('fod_algorithm')), inputs={ 'in_file': (self.series_preproc_spec_name, nifti_gz_format), 'wm_txt': ('wm_response', text_format), 'mask_file': (self.brain_mask_spec_name, nifti_gz_format), 'grad_fsl': self.fsl_grads(pipeline)}, outputs={ 'wm_odf': ('wm_odf', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) if self.multi_tissue: dwi2fod.inputs.gm_odf = 'gm.mif', dwi2fod.inputs.csf_odf = 'csf.mif', pipeline.connect_input('gm_response', dwi2fod, 'gm_txt', text_format), pipeline.connect_input('csf_response', dwi2fod, 'csf_txt', text_format), pipeline.connect_output('gm_odf', dwi2fod, 'gm_odf', nifti_gz_format), pipeline.connect_output('csf_odf', dwi2fod, 'csf_odf', nifti_gz_format), # Check inputs/output are connected return pipeline def extract_b0_pipeline(self, **name_maps): """ Extracts the b0 images from a DWI study and takes their mean """ pipeline = self.new_pipeline( name='extract_b0', desc="Extract b0 image from a DWI study", citations=[mrtrix_cite], name_maps=name_maps) # Extraction node extract_b0s = pipeline.add( 'extract_b0s', ExtractDWIorB0( bzero=True, quiet=True), inputs={ 'fslgrad': self.fsl_grads(pipeline), 'in_file': (self.series_preproc_spec_name, nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) # FIXME: Need a registration step before the mean # Mean calculation node mean = pipeline.add( "mean", MRMath( axis=3, operation='mean', quiet=True), inputs={ 'in_files': (extract_b0s, 'out_file')}, requirements=[mrtrix_req.v('3.0rc3')]) # Convert to Nifti pipeline.add( "output_conversion", MRConvert( out_ext='.nii.gz', quiet=True), inputs={ 'in_file': (mean, 'out_file')}, outputs={ 'b0': ('out_file', nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) return pipeline def global_tracking_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='global_tracking', desc="Extract b0 image from a DWI study", citations=[mrtrix_cite], name_maps=name_maps) mask = pipeline.add( 'mask', DWI2Mask(), inputs={ 'grad_fsl': self.fsl_grads(pipeline), 'in_file': (self.series_preproc_spec_name, nifti_gz_format)}, requirements=[mrtrix_req.v('3.0rc3')]) tracking = pipeline.add( 'tracking', Tractography( select=self.parameter('num_global_tracks'), cutoff=self.parameter('global_tracks_cutoff')), inputs={ 'seed_image': (mask, 'out_file'), 'in_file': ('wm_odf', mrtrix_image_format)}, outputs={ 'global_tracks': ('out_file', mrtrix_track_format)}, requirements=[mrtrix_req.v('3.0rc3')]) if self.provided('anat_5tt'): pipeline.connect_input('anat_5tt', tracking, 'act_file', mrtrix_image_format) return pipeline def intrascan_alignment_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='affine_mat_generation', desc=("Generation of the affine matrices for the main dwi " "sequence starting from eddy motion parameters"), citations=[fsl_cite], name_maps=name_maps) pipeline.add( 'gen_aff_mats', AffineMatrixGeneration(), inputs={ 'reference_image': ('mag_preproc', nifti_gz_format), 'motion_parameters': ('eddy_par', eddy_par_format)}, outputs={ 'align_mats': ('affine_matrices', motion_mats_format)}) return pipeline def connectome_pipeline(self, **name_maps): pipeline = self.new_pipeline( name='connectome', desc=("Generate a connectome from whole brain connectivity"), citations=[], name_maps=name_maps) aseg_path = pipeline.add( 'aseg_path', AppendPath( sub_paths=['mri', 'aparc+aseg.mgz']), inputs={ 'base_path': ('anat_fs_recon_all', directory_format)}) pipeline.add( 'connectome', mrtrix3.BuildConnectome(), inputs={ 'in_file': ('global_tracks', mrtrix_track_format), 'in_parc': (aseg_path, 'out_path')}, outputs={ 'connectome': ('out_file', csv_format)}, requirements=[mrtrix_req.v('3.0rc3')]) return pipeline