rec_moire_lattice = bandcalc.generate_lattice_by_shell(rec_m, shells) # Real space moire basis vectors m = bandcalc.generate_reciprocal_lattice_basis(rec_m) # Real space moire lattice vectors moire_lattice = bandcalc.generate_lattice_by_shell(m, shells) if potential == "MoS2": # Moire potential coefficients V = 6.6 * 1e-3 * np.exp(-1j * 94 * np.pi / 180) # in eV Vj = np.array([V if i % 2 else np.conjugate(V) for i in range(1, 7)]) potential_matrix = bandcalc.calc_potential_matrix_from_coeffs( rec_moire_lattice, Vj) elif potential == "off": potential_matrix = bandcalc.calc_potential_matrix(rec_moire_lattice) ## Calculate eigenstates for every k point in the MBZ k_points = bandcalc.generate_monkhorst_pack_set(rec_m, 30).astype(np.float32) hamiltonian = bandcalc.calc_hamiltonian(rec_moire_lattice, potential_matrix, mass) ## Calculate MBZ and choose some K-points for the k-path vor_m = Voronoi(rec_moire_lattice) sorted_vertices = np.array( sorted(vor_m.vertices, key=lambda x: np.abs(x.view(complex))))[:6] sorted_vertices = np.array( sorted(sorted_vertices, key=lambda x: np.angle(x.view(complex)))) points = np.array([[0, 0], sorted_vertices[0], sorted_vertices[1], sorted_vertices[3]]) k_names = [r"$\gamma$", r"$\kappa'$", r"$\kappa''$", r"$\kappa$"]
b2 = np.array([0, 2*np.pi/a, 0]) b3 = np.array([0, 0, 2*np.pi/a]) b = np.vstack([b1, b2, b3]) lattice = bandcalc.generate_lattice_by_shell(b, 2) # k path points = np.array([[0, 0, 0], # Gamma [0, np.pi/a, 0], # X [np.pi/a, np.pi/a, 0], # M [0, 0, 0], # Gamma [np.pi/a, np.pi/a, np.pi/a]]) # R k_names = [r"$\Gamma$", r"X", r"M", r"$\Gamma$", r"R"] path = bandcalc.generate_k_path(points, N) # Calculate band structure potential_matrix = bandcalc.calc_potential_matrix(lattice) hamiltonian = bandcalc.calc_hamiltonian(lattice, potential_matrix, m) bandstructure, prefix = bandcalc.get_unit_prefix( bandcalc.calc_bandstructure(path, hamiltonian)) # Plots fig = plt.figure(figsize=(11,5)) ax0 = fig.add_subplot(121, projection="3d") ax1 = fig.add_subplot(122) bandcalc.plot_lattice_3d(ax0, lattice, "ko") bandcalc.plot_k_path_3d(ax0, path, "r") bandcalc.plot_bandstructure(ax1, bandstructure, k_names, "k") ax1.set_ylabel(r"$E - \hbar\Omega_0$ in {}eV".format(prefix)) ax1.set_ylim([0, 4])