Exemple #1
0
    def test_lane_change(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorMobil(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorIDMLaneTracking(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 15, -1.75, 0, 2])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.05]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 100]

        # Draw map
        for _ in range(0, 10):
            viewer.clear()
            world.Step(sim_step_time)
            viewer.drawWorld(world)
            viewer.show(block=False)
            time.sleep(sim_step_time / sim_real_time_factor)
Exemple #2
0
def make_initial_world(primitives):
    # must be within examples params folder
    params = ParameterServer()
    world = World(params)

    # Define two behavior models
    behavior_model = BehaviorMPContinuousActions(params)
    primitive_mapping = {}
    for prim in primitives:
        idx = behavior_model.AddMotionPrimitive(
            np.array(prim))  # adding action
        primitive_mapping[idx] = prim

    behavior_model.ActionToBehavior(0)  # setting initial action

    execution_model = ExecutionModelInterpolate(params)
    dynamic_model = SingleTrackModel(params)

    behavior_model2 = BehaviorConstantVelocity(params)
    execution_model2 = ExecutionModelInterpolate(params)
    dynamic_model2 = SingleTrackModel(params)

    # Define the map interface and load a testing map
    map_interface = MapInterface()
    xodr_map = MakeXodrMapOneRoadTwoLanes()
    map_interface.SetOpenDriveMap(xodr_map)
    world.SetMap(map_interface)

    # Define the agent shapes
    agent_2d_shape = CarRectangle()
    init_state = np.array([0, 3, -5.25, 0, 20])

    # Define the goal definition for agents
    center_line = Line2d()
    center_line.AddPoint(Point2d(0.0, -1.75))
    center_line.AddPoint(Point2d(100.0, -1.75))

    max_lateral_dist = (0.4, 0.5)
    max_orientation_diff = (0.08, 0.1)
    velocity_range = (5.0, 20.0)
    goal_definition = GoalDefinitionStateLimitsFrenet(center_line,
                                                      max_lateral_dist,
                                                      max_orientation_diff,
                                                      velocity_range)

    # define two agents with the different behavior models
    agent_params = params.AddChild("agent1")
    agent = Agent(init_state, behavior_model, dynamic_model, execution_model,
                  agent_2d_shape, agent_params, goal_definition, map_interface)
    world.AddAgent(agent)

    init_state2 = np.array([0, 25, -5.25, 0, 15])
    agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                   execution_model2, agent_2d_shape, agent_params,
                   goal_definition, map_interface)
    world.AddAgent(agent2)

    return world
Exemple #3
0
    def __find_first_ts_on_map__(self, id_ego):
        traj = TrajectoryFromTrack(self._track_dict[id_ego])
        for state in traj:
            point_agent = Point2d(state[1], state[2])
            car_shape = CarRectangle()
            agent_shape = car_shape.Transform([state[1], state[2], state[3]])
            lane_list = self._map_interface.find_nearest_lanes(point_agent, 3)
            for lane in lane_list:
                lane_polygon = self._map_interface.GetRoadgraph(
                ).GetLanePolygonForLaneId(lane.lane_id)
                # if Collide(lane_polygon, point_agent) and Within(agent_shape, lane_polygon):
                if Collide(lane_polygon, point_agent):
                    offset_fix = 500  # adding some time offset to always find lane corridor
                    time_ego_first = state[
                        0] * 1e3 + offset_fix  # use timestamp in ms
                    return time_ego_first

        return None
Exemple #4
0
    def test_python_behavior_model(self):
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            os.path.dirname(__file__), "params/", scenario_param_file))

        world = World(params)

        # Define two behavior models one python one standard c++ model
        behavior_model = PythonDistanceBehavior(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantAcceleration(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Define the map interface and load a testing map
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # Define the agent shapes
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])

        # Define the goal definition for agents
        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # define two agents with the different behavior models
        agent_params = params.AddChild("agent1")
        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 15])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 20):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition, "red", 0.5,
                                              "red")
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
Exemple #5
0
    def test_uct_single_agent(self):
        try:
            from bark.core.models.behavior import BehaviorUCTSingleAgentMacroActions
        except:
            print("Rerun with --define planner_uct=true")
            return
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            os.path.dirname(__file__), "params/", scenario_param_file))

        world = World(params)

        # Model Definitions
        behavior_model = BehaviorUCTSingleAgentMacroActions(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantAcceleration(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])
        agent_params = params.AddChild("agent1")

        # goal_polygon = Polygon2d(
        #     [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)])
        # goal_definition = GoalDefinitionPolygon(goal_polygon)
        # goal_polygon = goal_polygon.Translate(Point2d(90, -2))

        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 0])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 5):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition)
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)