Exemple #1
0
def test_train(shared_artifact_dir, cfg):
    records_train = gen_records(NUM_SAMPLES)
    records_validation = gen_records(NUM_SAMPLES)

    bm = engine.BarrageModel(shared_artifact_dir)
    net = bm.train(cfg, records_train, records_validation)
    assert isinstance(net, tf.keras.models.Model)

    assert os.path.isdir(shared_artifact_dir)
    assert os.path.isdir(os.path.join(shared_artifact_dir, "dataset"))
    assert os.path.isdir(os.path.join(shared_artifact_dir, "best_checkpoint"))
    assert os.path.isdir(
        os.path.join(shared_artifact_dir, "resume_checkpoints"))
    assert os.path.isdir(os.path.join(shared_artifact_dir, "TensorBoard"))
    assert os.path.isfile(
        os.path.join(shared_artifact_dir, "training_report.csv"))
    assert os.path.isfile(os.path.join(shared_artifact_dir, "config.json"))
    assert os.path.isfile(os.path.join(shared_artifact_dir, "config.pkl"))
    assert os.path.isfile(
        os.path.join(shared_artifact_dir, "network_params.json"))
    assert os.path.isfile(
        os.path.join(shared_artifact_dir, "network_params.pkl"))

    assert os.path.isfile(
        os.path.join(shared_artifact_dir, "best_checkpoint",
                     "model_best.ckpt.index"))
    assert os.path.isfile(
        os.path.join(shared_artifact_dir, "resume_checkpoints",
                     "model_epoch_0001.ckpt.index"))
    assert os.path.isfile(
        os.path.join(shared_artifact_dir, "resume_checkpoints",
                     "model_epoch_0002.ckpt.index"))
Exemple #2
0
def test_predict(shared_artifact_dir, records_score):
    bm = engine.BarrageModel(shared_artifact_dir)
    bm.load()
    scores = bm.predict(records_score)

    assert len(scores) == NUM_SAMPLES

    for s in scores:
        assert list(s.keys()) == ["output"]
        assert len(s["output"]) == 2
        assert 98 <= s["output"][0] <= 102
        assert 98 <= s["output"][1] <= 102