# -*- coding: utf-8 -*- """ Created on Wed Mar 23 12:37:57 2016 @author: Zhao Cheng __version__ = '0.1.1' To config logstash """ import logging logging.basicConfig(level=logging.INFO) import config_default import base logstash = config_default.logstash try: from . import config_override base.merge(logstash, config_overrides.logstash) logging.info('Get the config_override') except ImportError: logging.info('config_override not exist')
from sklearn import svm from base import traversalDir_FirstDir, merge from get_data import z_norm if __name__ == "__main__": # 读取地影属性 diying_attribute = list( pd.read_csv("./parameter/diying.csv", header=None)[0]) for i in range(len(diying_attribute)): diying_attribute[i] = "BX0101_" + diying_attribute[i] # 训练集数据读取 read_path_train = "./data/train" file_path_list = traversalDir_FirstDir(read_path_train) train_data = merge(file_path_list)[diying_attribute] train_data["Class"] = 0 # 验证集数据读取 read_path_val = "./data/val" file_path_list = traversalDir_FirstDir(read_path_val) val_data = merge(file_path_list)[diying_attribute] read_path_val = "./data/val_set" file_path_list = traversalDir_FirstDir(read_path_val) sources = np.zeros((141017, 24)) for i in range(len(file_path_list)): data = pd.read_csv(file_path_list[i], engine="python")["Class"] sources[:, i] = data.values sources = np.sum(sources, axis=1) source_label = [1 if source > 0 else 0 for source in sources] val_data["Class"] = source_label
def get_vm_ouput(): name = '虚拟机信息' list_path = ['data/*vm.csv'] list_sheet = ['虚拟机信息'] merge(name, list_path, list_sheet) return None
result.append(data[i: i+sequence_length]) result = np.array(result) # shape (samples, sequence_length) X = result[:, 0:-1] Y = result[:, -1] X = np.reshape(X, (X.shape[0], X.shape[1], 1)) return X, Y if __name__ == "__main__": # 绘制正常数据曲线及其预测曲线 read_path = r"./data/train" read_file_list = traversalDir_FirstDir(read_path) data = merge(read_file_list) data.set_index(["Time"], inplace=True) diying_attribute = list(pd.read_csv("./parameter/diying.csv", header=None)[0]) for i in range(len(diying_attribute)): diying_attribute[i] = "BX0101_" + diying_attribute[i] data = data[diying_attribute] # data = data.iloc[0:9000, :] for i in range(data.shape[0]): data_copy = data.iloc[:, i:i+1].copy() data.iloc[:, i:i+1] = z_norm(data_copy) tmp = data.iloc[:, i].values plt.plot(tmp[5000:20000], c="b") # tmp_x, tmp_y = test_GetData(tmp) # new_model = load_model('./model/' + data.columns[i] + ".h5") # result = new_model.predict(tmp_x, batch_size=256)
def check_output(): name = '虚拟平台巡检附件' list_path = ['data/*VmHost.csv', 'data/*Datastore.csv', 'data/*Alarm.csv'] list_sheet = ['宿主机巡检结果', '存储巡检结果', '告警次数'] merge(name, list_path, list_sheet) return None
# -*- coding: utf-8 -*- """ Created on Wed Mar 23 12:37:57 2016 @author: Zhao Cheng __version__ = '0.1.1' To config logstash """ import logging; logging.basicConfig(level=logging.INFO) import config_default import base logstash = config_default.logstash try: from . import config_override base.merge(logstash, config_overrides.logstash) logging.info('Get the config_override') except ImportError: logging.info('config_override not exist')