def run_mimic(t, samples, keep, m): fill = [N] * N ranges = array('i', fill) ef = TravelingSalesmanRouteEvaluationFunction(points) odd = DiscreteUniformDistribution(ranges) fname = outfile.format('MIMIC{}_{}_{}'.format(samples, keep, m), str(t + 1)) base.write_header(fname) df = DiscreteDependencyTree(m, ranges) ef = TravelingSalesmanRouteEvaluationFunction(points) pop = GenericProbabilisticOptimizationProblem(ef, odd, df) mimic = MIMIC(samples, keep, pop) fit = FixedIterationTrainer(mimic, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(mimic.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print st base.write_to_file(fname, st) return
def run_mimic(t, samples, keep, m): fname = outfile.format('MIMIC{}_{}_{}'.format(samples, keep, m), str(t + 1)) base.write_header(fname) ef = ContinuousPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) nf = DiscreteChangeOneNeighbor(ranges) mf = DiscreteChangeOneMutation(ranges) cf = SingleCrossOver() gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf) df = DiscreteDependencyTree(m, ranges) pop = GenericProbabilisticOptimizationProblem(ef, odd, df) mimic = MIMIC(samples, keep, pop) fit = FixedIterationTrainer(mimic, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(mimic.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print st base.write_to_file(fname, st) return
def run_rhc(t): fname = outfile.format('RHC', str(t + 1)) base.write_header(fname) ef = TravelingSalesmanRouteEvaluationFunction(points) hcp = GenericHillClimbingProblem(ef, odd, nf) rhc = RandomizedHillClimbing(hcp) fit = FixedIterationTrainer(rhc, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(rhc.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print st base.write_to_file(fname, st) return
def run_ga(t, pop, mate, mutate): fname = outfile.format('GA{}_{}_{}'.format(pop, mate, mutate), str(t + 1)) base.write_header(fname) ef = TravelingSalesmanRouteEvaluationFunction(points) gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf) ga = StandardGeneticAlgorithm(pop, mate, mutate, gap) fit = FixedIterationTrainer(ga, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(ga.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print st base.write_to_file(fname, st) return
def run_sa(t, CE): fname = outfile.format('SA{}'.format(CE), str(t + 1)) base.write_header(fname) ef = TravelingSalesmanRouteEvaluationFunction(points) hcp = GenericHillClimbingProblem(ef, odd, nf) sa = SimulatedAnnealing(1E10, CE, hcp) fit = FixedIterationTrainer(sa, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(sa.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print st base.write_to_file(fname, st) return
def run_rhc(t): fname = outfile.format('RHC', str(t + 1)) base.write_header(fname) ef = ContinuousPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) nf = DiscreteChangeOneNeighbor(ranges) hcp = GenericHillClimbingProblem(ef, odd, nf) rhc = RandomizedHillClimbing(hcp) fit = FixedIterationTrainer(rhc, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(rhc.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print fname, st base.write_to_file(fname, st) return
def run_ga(t, pop, mate, mutate): fname = outfile.format('GA{}_{}_{}'.format(pop, mate, mutate), str(t + 1)) base.write_header(fname) ef = ContinuousPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) nf = DiscreteChangeOneNeighbor(ranges) mf = DiscreteChangeOneMutation(ranges) cf = SingleCrossOver() gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf) ga = StandardGeneticAlgorithm(pop, mate, mutate, gap) fit = FixedIterationTrainer(ga, 10) times = [0] for i in range(0, maxIters, 10): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) fevals = ef.fevals score = ef.value(ga.getOptimal()) ef.fevals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) # print st base.write_to_file(fname, st) return