def __init__(self, modeldir=None): BaseClassifier.__init__(self, modeldir) self.classes = 46 self.class_sample_num = 5 self.sample_size = 15#15*15 self.model = None self.model_type = 1 #1=knearest, 2=svm self.k_neighbor_num = 5
def __init__(self, classes=24, samplepercls=10, modeltype=1, modeldir=None): BaseClassifier.__init__(self, modeldir) self.classes = classes self.class_sample_num = samplepercls self.model_type = modeltype #1=knearest, 2=svm self.k_neighbor_num = 5 self.sample_size = 15#15*15 self.model = None
def __init__(self, features, target_names, bins=default_bins, postprocess=None): """ Initialize the classifier. @param features: see `BaseClassifier.__init__()`. @param target_names: see `BaseClassifier.__init__()`. @param bins: A list of interval borders as generated by `initialize_bins`. @param postprocess: A function that can be called to postprocess the generated recommendations in some manner. At the moment, static cutoff and dynamic cutoff are defined as postprocessing methods. @return: """ BaseClassifier.__init__(self, features, target_names) self.bins = bins self.postprocess = postprocess #make an index that allows fast lookup of index of the correct timedelta column for each sensor self.timedelta_column_for_sensor = {sensor: self.timedelta_columns.index("%s_timedelta" % sensor) for sensor, value in self.settings_columns}
def __init__(self, features, target_names, bins=default_bins, postprocess=None): """ Initialize the classifier. @param features: see `BaseClassifier.__init__()`. @param target_names: see `BaseClassifier.__init__()`. @param bins: A list of interval borders as generated by `initialize_bins`. @param postprocess: A function that can be called to postprocess the generated recommendations in some manner. At the moment, static cutoff and dynamic cutoff are defined as postprocessing methods. @return: """ BaseClassifier.__init__(self, features, target_names) self.bins = bins self.postprocess = postprocess #make an index that allows fast lookup of index of the correct timedelta column for each sensor self.timedelta_column_for_sensor = { sensor: self.timedelta_columns.index("%s_timedelta" % sensor) for sensor, value in self.settings_columns }
def __init__(self, features, target_names): BaseClassifier.__init__(self, features, target_names)