def getTestCases(self): return { "pad_4d_2d": [ base.Tensor([1, 2, 2, 1]), base.Tensor([4, 2], dtype=tf.int32, const_val=[0, 0, 1, 1, 1, 1, 0, 0]) ] }
def getTestCases(self): ''' this returns a a hash containg test cases. key of return hash is test case name and value of return hash is test is a list of input tensor metadata. test name (key of hash) is used as - prefix of file name to be generated (don't use white space or special characters) - output node name pf graph ''' return {"stack_4d": [base.Tensor([1, 4, 3]), base.Tensor([1, 4, 3])]}
def getTestCases(self): ''' this returns a hash of test case (= set of input type), for example: [1.2, -2.3] : two input, both are scalar. one is 1.2, another is -2.3 [[5,3], [5,4,3]] : two input, both are shapes. one is [5.3], another is [5,4,3] test name (key of hash) is used as - prefix of file name to be generated - output node name pf graph ''' return { "topk_2d": [ base.Tensor(shape=[2, 3], dtype=tf.float32), base.Tensor(shape=[], const_val=2, dtype=tf.int32) ], "topk_3d": [ base.Tensor(shape=[2, 3, 4], dtype=tf.float32), base.Tensor(shape=[], const_val=2, dtype=tf.int32) ], }
def getTestCases(self): ''' this returns a a hash containg test cases. key of return hash is test case name and value of return hash is test is a list of input tensor metadata. test name (key of hash) is used as - prefix of file name to be generated (don't use white space or special characters) - output node name pf graph ''' # yapf: disable return { "div_scalarConst_scalarConst": [base.Tensor([], const_val=1.2), base.Tensor([], const_val=-2.3)], "div_1d_1d": [base.Tensor([5]), base.Tensor([5])], "div_2d_2d": [base.Tensor([5, 3]), base.Tensor([5, 3])], "div_3d_3d": [base.Tensor([5, 4, 3]), base.Tensor([5, 4, 3])], "div_4d_4d": [base.Tensor([2, 5, 4, 3]), base.Tensor([2, 5, 4, 3])], # broadcasting by scalar "div_1d_scalarConst": [base.Tensor([5]), base.Tensor([], const_val=1.1)], "div_2d_scalarConst": [base.Tensor([5, 3]), base.Tensor([], const_val=1.1)], "div_3d_scalarConst": [base.Tensor([5, 4, 3]), base.Tensor([], const_val=1.1)], "div_4d_scalarConst": [base.Tensor([2, 5, 4, 3]), base.Tensor([], const_val=1.1)], # broadcasting by 1d "div_2d_1d": [base.Tensor([5, 3]), base.Tensor( [3])], "div_3d_1d": [base.Tensor([5, 4, 3]), base.Tensor( [3])], "div_4d_1d": [base.Tensor([2, 5, 4, 3]), base.Tensor( [3])], # broadcasting by 2d "div_3d_2d": [base.Tensor([5, 4, 3]), base.Tensor( [4, 3])], "div_4d_2d": [base.Tensor([2, 5, 4, 3]), base.Tensor( [4, 3])], # broadcasting by 3d "div_4d_3d": [base.Tensor([2, 5, 4, 3]), base.Tensor( [5, 4, 3])] }
def getTestCases(self): return {"floor_4d_4d": [base.Tensor([1, 2, 2, 1]), base.Tensor([1, 2, 2, 1])]}
def getTestCases(self): return {"transpose_4d": [base.Tensor([1, 2, 2, 1])]}
def getTestCases(self): return {"squeeze_3d": [base.Tensor([1, 5, 1])]}