def __init__(self, unlabeled_datasets=None, models=None, undersample_before_eval=False): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__( self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval=undersample_before_eval) # ovewrite svm parameters here self.params = [svm_parameter() for d in unlabeled_datasets] # there's no reason to rebuild the models during active learning, # since we're just randomly picking things to label self.rebuild_models_at_each_iter = False print "switching query function to RANDOM" # # Here we switch the query function to randomly sampling. Note that # this function actually lives in the base_learner parent class, because # it may very well be useful for other learners to request ids for random # unlabeled examples # self.query_function = self.get_random_unlabeled_ids self.name = "Random" print "%s learner intialized with %s labeled examples" % ( self.name, self.labeled_datasets[0].size())
def __init__(self, unlabeled_datasets = [], experts=None, models=None, undersample_before_eval = False, request_path=None): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval = undersample_before_eval) # # most importantly we change the query function to SIMPLE here # self.query_function = self.DT
def __init__(self, unlabeled_datasets = None, models=None, undersample_before_eval = False): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval = undersample_before_eval) # # most importantly we change the query function to max_contention here # print "switching query function to max contention!" self.query_function = self.max_contention self.name = "CoTester_max_contention"
def __init__(self, unlabeled_datasets = [], models=None, undersample_before_eval = False, request_path=None): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval = undersample_before_eval) # # most importantly we change the query function to SIMPLE here # self.query_function = self.faker self.name ="FAKER" self.get_these = eval(open(request_path, 'r').readline())
def __init__(self, learners, unlabeled_datasets=None, undersample_before_eval = False, kernel_type=RBF, weights=[1,100], use_raw=False, name="STACKED"): BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, undersample_before_eval = undersample_before_eval) self.learners = learners self.labeled_datasets = None# stacked dataset self.unlabeled_datasets = None self.kernel_type = kernel_type self.weights = weights # If use_raw is true, the meta features will be the raw (signed) distances of # points from the hyperplanes, rather than the binary 1/-1 predictions. self.use_raw = use_raw self.name = name
def __init__(self, unlabeled_datasets = [], models=None, undersample_before_eval = False, kernel_type=LINEAR, svm_params=None): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval = undersample_before_eval, kernel_type=kernel_type, svm_params=svm_params) # # most importantly we change the query function to SIMPLE here # print "switching query function to SIMPLE!" self.query_function = self.SIMPLE self.name = "SIMPLE"
def __init__(self, unlabeled_datasets = [], models=None): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models) #super(SimpleLearner, self).__init__() # ovewrite svm parameters here self.params = [svm_parameter() for d in unlabeled_datasets] print "switching query function to SIMPLE!" # # most importantly we change the query function to SIMPLE here # self.query_function = self.SIMPLE self.name = "SIMPLE"
def __init__(self, unlabeled_datasets = [], models=None): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models) # ovewrite svm parameters here self.params = [svm_parameter() for d in unlabeled_datasets] print "switching query function to RANDOM" # # Here we switch the query function to randomly sampling. Note that # this function actually lives in the base_learner parent class, because # it may very well be useful for other learners to request ids for random # unlabeled examples # self.query_function = self.get_random_unlabeled_ids self.name = "Random"
def __init__(self, unlabeled_datasets=None, models=None, undersample_before_eval=False): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__( self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval=undersample_before_eval) # # most importantly we change the query function to max_contention here # print "switching query function to max contention!" self.query_function = self.max_contention self.name = "CoTester_max_contention"
def __init__(self, unlabeled_datasets = [], models=None, undersample_before_eval=False): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval=undersample_before_eval) # ovewrite svm parameters here self.params = [svm_parameter() for d in unlabeled_datasets] print "switching query function to RANDOM" # # Here we switch the query function to randomly sampling. Note that # this function actually lives in the base_learner parent class, because # it may very well be useful for other learners to request ids for random # unlabeled examples # self.query_function = self.get_random_unlabeled_ids self.name = "Random"
def __init__(self, unlabeled_datasets = None, models=None, undersample_before_eval = False): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval = undersample_before_eval) # ovewrite svm parameters here self.params = [svm_parameter() for d in unlabeled_datasets] # there's no reason to rebuild the models during active learning, # since we're just randomly picking things to label self.rebuild_models_at_each_iter = False print "switching query function to RANDOM" # # Here we switch the query function to randomly sampling. Note that # this function actually lives in the base_learner parent class, because # it may very well be useful for other learners to request ids for random # unlabeled examples # self.query_function = self.get_random_unlabeled_ids self.name = "Random" print "%s learner intialized with %s labeled examples" % (self.name, self.labeled_datasets[0].size())
def __init__(self, unlabeled_datasets=[], models=None, undersample_before_eval=False): # # call the BaseLearner constructor to initialize various globals and process the # datasets, etc.; of course, these can subsequently be overwritten. BaseSVMLearner.__init__( self, unlabeled_datasets=unlabeled_datasets, models=models, undersample_before_eval=undersample_before_eval) # ovewrite svm parameters here self.params = [svm_parameter() for d in unlabeled_datasets] print "switching query function to SIMPLE!" # # most importantly we change the query function to SIMPLE here # self.query_function = self.SIMPLE self.name = "SIMPLE"
def __init__(self, learners, unlabeled_datasets=None, undersample_before_eval=False, kernel_type=RBF, weights=[1, 100], use_raw=False, name="STACKED"): BaseSVMLearner.__init__( self, unlabeled_datasets=unlabeled_datasets, undersample_before_eval=undersample_before_eval) self.learners = learners self.labeled_datasets = None # stacked dataset self.unlabeled_datasets = None self.kernel_type = kernel_type self.weights = weights # If use_raw is true, the meta features will be the raw (signed) distances of # points from the hyperplanes, rather than the binary 1/-1 predictions. self.use_raw = use_raw self.name = name