Exemple #1
0
def insert_test_data():
    with status("Dropping all tables"):
        drop_tables()

    with status("Creating tables"):
        create_tables()

    for model in models.Base.metadata.tables:
        print('    -', model)

    USERNAME = '******'
    with status(f"Creating dummy user: {USERNAME}... "):
        u = models.User(username=USERNAME)
        models.DBSession().add(u)
        models.DBSession().commit()

    for i in range(3):
        with status("Inserting dummy project"):
            p = models.Project(name=f'test project {i}', users=[u])
            models.DBSession().add(p)
            models.DBSession().commit()

        print(f"\n{textwrap.indent(str(p), '  ')}\n")

    with status("Assert that user has 3 projects"):
        assert len(u.projects) == 3

    with status("Inserting dummy dataset and time series... "):
        files = [models.DatasetFile(uri=f'/dir/ts{i}.npz') for i in range(3)]
        d = models.Dataset(name='test dataset', project=p, files=files)
        models.DBSession().add_all(files + [d])
        models.DBSession().commit()

    with status("Inserting dummy featureset... "):
        f = models.Featureset(project=p,
                              name='test featureset',
                              file_uri='/dir/fset.npz',
                              features_list=['amplitude'])
        models.DBSession().add(f)
        models.DBSession().commit()

    with status("Inserting dummy model... "):
        m = models.Model(project=p,
                         featureset=f,
                         name='test model',
                         params={'n_estimators': 10},
                         type='RFC',
                         file_uri='/tmp/blah.pkl')
        models.DBSession().add(m)
        models.DBSession().commit()

    with status("Inserting dummy prediction... "):
        pr = models.Prediction(project=p,
                               model=m,
                               file_uri='/tmp/blergh.pkl',
                               dataset=d)
        models.DBSession().add(pr)
        models.DBSession().commit()
Exemple #2
0
    def _connect(self):
        env, cfg = load_env()
        self.basedir = Path(os.path.dirname(__file__)) / '..'
        (self.basedir / 'static/thumbnails').mkdir(parents=True, exist_ok=True)

        with status(f"Connecting to database {cfg['database']['database']}"):
            init_db(**cfg['database'])
Exemple #3
0
def insert_test_data():
    with status("Dropping all tables"):
        drop_tables()

    with status("Creating tables"):
        create_tables()

    for model in models.Base.metadata.tables:
        print('    -', model)

    USERNAME = '******'
    with status(f"Creating dummy user: {USERNAME}... "):
        u = models.User(username=USERNAME)
        models.DBSession().add(u)
        models.DBSession().commit()

    for i in range(3):
        with status("Inserting dummy project"):
            p = models.Project(name=f'test project {i}', users=[u])
            models.DBSession().add(p)
            models.DBSession().commit()

        print(f"\n{textwrap.indent(str(p), '  ')}\n")

    with status("Assert that user has 3 projects"):
        assert len(u.projects) == 3

    with status("Inserting dummy dataset and time series... "):
        files = [models.DatasetFile(uri=f'/dir/ts{i}.npz') for i in range(3)]
        d = models.Dataset(name='test dataset', project=p, files=files)
        models.DBSession().add_all(files + [d])
        models.DBSession().commit()

    with status("Inserting dummy featureset... "):
        f = models.Featureset(project=p, name='test featureset',
                              file_uri='/dir/fset.npz',
                              features_list=['amplitude'])
        models.DBSession().add(f)
        models.DBSession().commit()

    with status("Inserting dummy model... "):
        m = models.Model(project=p, featureset=f, name='test model',
                         params={'n_estimators': 10}, type='RFC',
                         file_uri='/tmp/blah.pkl')
        models.DBSession().add(m)
        models.DBSession().commit()

    with status("Inserting dummy prediction... "):
        pr = models.Prediction(project=p, model=m, file_uri='/tmp/blergh.pkl', dataset=d)
        models.DBSession().add(pr)
        models.DBSession().commit()
Exemple #4
0
    topdir = PurePosixPath(os.path.abspath(__file__)).parent.parent

    data_source = sys.argv[1]  # get the data source name from the command-line
    if cfg['data_load'].get(data_source) is None:
        raise RuntimeError(
            f'Make sure that {data_source} is in the data_load section of '
            'your config.yaml.'
        )

    if cfg['data_load'][data_source].get("file") is not None:
        fname = str(topdir / cfg['data_load'][data_source]["file"])
        src = yaml.load(open(fname, "r"), Loader=Loader)
    else:
        src = cfg['data_load'][data_source]

    with status(f"Connecting to database {cfg['database']['database']}"):
        init_db(**cfg["database"])

    if src.get("drop_tables", False):
        with status("Dropping all tables"):
            drop_tables()

    if src.get("create_tables", False):
        with status("Creating tables"):
            create_tables()

    if src.get("print_tables", False):
        for model in Base.metadata.tables:
            print("    -", model)

    if src.get("create_permissions", False):
Exemple #5
0
                         file_uri='/tmp/blah.pkl')
        models.DBSession().add(m)
        models.DBSession().commit()

    with status("Inserting dummy prediction... "):
        pr = models.Prediction(project=p,
                               model=m,
                               file_uri='/tmp/blergh.pkl',
                               dataset=d)
        models.DBSession().add(pr)
        models.DBSession().commit()


def create_token_user(bot_name, project_ids):
    u = models.User(username=bot_name)
    p = models.Project.query.filter(models.Project.id.in_(project_ids)).all()
    u.projects.extend(p)
    t = models.Token(user=u)
    models.DBSession().add_all([u, t])
    models.DBSession().commit()
    return t.id


if __name__ == "__main__":
    env, cfg = load_env()

    with status(f"Connecting to database {cfg['database']['database']}"):
        models.init_db(**cfg['database'])

    insert_test_data()
Exemple #6
0
import pandas as pd

from baselayer.app.env import load_env
from baselayer.app.model_util import status, create_tables, drop_tables
from social_tornado.models import TornadoStorage
from skyportal.models import (init_db, Base, DBSession, Comment, Instrument,
                              Group, GroupUser, Photometry, Source, Spectrum,
                              Telescope, Thumbnail, User)
from skyportal.model_util import setup_permissions

if __name__ == "__main__":
    """Insert test data"""
    env, cfg = load_env()
    basedir = Path(os.path.dirname(__file__)) / '..'

    with status(f"Connecting to database {cfg['database']['database']}"):
        init_db(**cfg['database'])

    with status("Dropping all tables"):
        drop_tables()

    with status("Creating tables"):
        create_tables()

    for model in Base.metadata.tables:
        print('    -', model)

    with status(f"Creating permissions"):
        setup_permissions()

    with status(f"Creating dummy users"):
def setup_survey_db():
    # if os.getcwd().endswith('survey_app'):
    #     os.chdir('./cesium_web')
    env, cfg = load_env()
    for data_dir in cfg['paths'].values():
        if not os.path.exists(data_dir):
            os.makedirs(data_dir)


    db_session = init_db(**baselayer.app.config.load_config()['database'])
    # Drop & create tables
    with status('Dropping and re-creating tables'):
        drop_tables()
        create_tables()

    # Add testuser
    with status('Adding testuser'):
        u = models.User(username='******')
        models.DBSession().add(u)
        models.DBSession().commit()

    # Add project
    with status('Adding project'):
        p = models.Project(name='Survey Classifier', users=[u])
        models.DBSession().add(p)
        models.DBSession().commit()

    # Add datasets
    with status('Adding datasets'):
        for dataset_name, ts_data_dir in [
                ['Survey Light Curve Data',
                 'survey_classifier_data/data/lightcurves'],
                ['ASAS',
                 'survey_classifier_data/data/ASAS_lcs'],
                ['Noisified to CoRoT',
                 'survey_classifier_data/data/noisified_CoRoT_lcs'],
                ['Noisified to HATNet',
                 'survey_classifier_data/data/noisified_HATNet_lcs'],
                ['Noisified to Hipparcos',
                 'survey_classifier_data/data/noisified_Hipparcos_lcs'],
                ['Noisified to KELT',
                 'survey_classifier_data/data/noisified_KELT_lcs'],
                ['Noisified to Kepler',
                 'survey_classifier_data/data/noisified_Kepler_lcs'],
                ['Noisified to LINEAR',
                 'survey_classifier_data/data/noisified_LINEAR_lcs'],
                ['Noisified to OGLE-III',
                 'survey_classifier_data/data/noisified_OGLE-III_lcs'],
                ['Noisified to SuperWASP',
                 'survey_classifier_data/data/noisified_SuperWASP_lcs'],
                ['Noisified to TrES',
                 'survey_classifier_data/data/noisified_TrES_lcs']]:

            ts_paths = []
            # As these are only ever accessed to determine meta features, only
            # copy first ten (arbitrary) TS
            for src in glob.glob(os.path.join(os.path.abspath(ts_data_dir),
                                              '*.npz'))[:10]:
                # Add the path to the copied file in cesium data directory
                ts_paths.append(os.path.abspath(shutil.copy(
                    os.path.abspath(src), cfg['paths']['ts_data_folder'])))
            try:
                meta_features = list(load_ts(ts_paths[0])
                                     .meta_features.keys())
            except IndexError: # No TS data on disk
                meta_features = None
            files = [models.DatasetFile(uri=ts_path) for ts_path in ts_paths]
            dataset = models.Dataset(name=dataset_name, project=p, files=files,
                                     meta_features=meta_features)
            models.DBSession().add_all(files + [dataset])
            models.DBSession().commit()
            print(f'Added dataset {dataset.id}')

    # Add featuresets
    fset_dict = {}
    for fset_name, orig_fset_path, features_list in [
            ['Survey LC Cadence/Error Features',
             './survey_classifier_data/data/survey_lc_features.npz',
             CADENCE_FEATS],
            ['ASAS',
             './survey_classifier_data/data/ASAS_features.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['CoRoT',
             './survey_classifier_data/data/noisified_CoRoT_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['HATNet',
             './survey_classifier_data/data/noisified_HATNet_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['Hipparcos',
             './survey_classifier_data/data/noisified_Hipparcos_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['KELT',
             './survey_classifier_data/data/noisified_KELT_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['Kepler',
             './survey_classifier_data/data/noisified_Kepler_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['LINEAR',
             './survey_classifier_data/data/noisified_LINEAR_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['OGLE-III',
             './survey_classifier_data/data/noisified_OGLE-III_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['SuperWASP',
             './survey_classifier_data/data/noisified_SuperWASP_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS],
            ['TrES',
             './survey_classifier_data/data/noisified_TrES_features_100.npz',
             GENERAL_FEATS + LOMB_SCARGLE_FEATS]]:
        fset_path = os.path.abspath(
            shutil.copy(os.path.abspath(orig_fset_path),
                        cfg['paths']['features_folder']))
        fset = models.Featureset(name=fset_name, file_uri=fset_path,
                                 project=p, features_list=features_list,
                                 task_id=None, finished=datetime.datetime.now())
        models.DBSession().add(fset)
        models.DBSession().commit()
        # fset.task_id = None
        # fset.finished = datetime.datetime.now()
        # fset.save()
        fset_dict[fset_name] = fset
        print(f'Added featureset {fset.id}')

    # Add models
    # TODO: Add actual model params
    for model_name, orig_model_path, model_type, params, fset_name in [
            ['Survey LCs RFC',
             os.path.abspath('./survey_classifier_data/data/survey_classifier.pkl'),
             'RandomForestClassifier', {}, 'Survey LC Cadence/Error Features'],
            ['ASAS',
             os.path.abspath('./survey_classifier_data/data/ASAS_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'ASAS'],
            ['CoRoT',
             os.path.abspath('./survey_classifier_data/data/noisified_CoRoT_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'CoRoT'],
            ['HATNet',
             os.path.abspath('./survey_classifier_data/data/noisified_HATNet_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'HATNet'],
            ['Hipparcos',
             os.path.abspath('./survey_classifier_data/data/noisified_Hipparcos_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'Hipparcos'],
            ['KELT',
             os.path.abspath('./survey_classifier_data/data/noisified_KELT_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'KELT'],
            ['Kepler',
             os.path.abspath('./survey_classifier_data/data/noisified_Kepler_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'Kepler'],
            ['LINEAR',
             os.path.abspath('./survey_classifier_data/data/noisified_LINEAR_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'LINEAR'],
            ['OGLE-III',
             os.path.abspath('./survey_classifier_data/data/noisified_OGLE-III_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'OGLE-III'],
            ['SuperWASP',
             os.path.abspath('./survey_classifier_data/data/noisified_SuperWASP_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'SuperWASP'],
            ['TrES',
             os.path.abspath('./survey_classifier_data/data/noisified_TrES_model_compressed.pkl'),
             'RandomForestClassifier', {}, 'TrES']]:
        model_path = os.path.abspath(
            shutil.copy(orig_model_path, cfg['paths']['models_folder']))
        model = models.Model(name=model_name, file_uri=model_path,
                             featureset_id=fset_dict[fset_name].id, project=p,
                             project_id=p.id,
                             params=params, type=model_type, task_id=None,
                             finished=datetime.datetime.now())
        models.DBSession().add(model)
        models.DBSession().commit()
        # model.task_id = None
        # model.finished = datetime.datetime.now()
        # model.save()
        print(f'Added model {model.id}')
    print(cfg)
Exemple #8
0
    with status("Inserting dummy model... "):
        m = models.Model(project=p, featureset=f, name='test model',
                         params={'n_estimators': 10}, type='RFC',
                         file_uri='/tmp/blah.pkl')
        models.DBSession().add(m)
        models.DBSession().commit()

    with status("Inserting dummy prediction... "):
        pr = models.Prediction(project=p, model=m, file_uri='/tmp/blergh.pkl', dataset=d)
        models.DBSession().add(pr)
        models.DBSession().commit()


def create_token_user(bot_name, project_ids):
    u = models.User(username=bot_name)
    p = models.Project.query.filter(models.Project.id.in_(project_ids)).all()
    u.projects.extend(p)
    t = models.Token(user=u)
    models.DBSession().add_all([u, t])
    models.DBSession().commit()
    return t.id


if __name__ == "__main__":
    env, cfg = load_env()

    with status(f"Connecting to database {cfg['database']['database']}"):
        models.init_db(**cfg['database'])

    insert_test_data()
Exemple #9
0
import model_util

if __name__ == "__main__":
    """Create the initial structure of the DB, prepping for Skyportal"""

    env, cfg = load_env()
    basedir = Path(os.path.dirname(__file__)) / '..'

    _, adminuser = parseaddr(results.adminuser)
    if adminuser == '' and results.adminuser is not None:
        print("Note: adminuser is not a valid email address")
    _, user = parseaddr(results.user)
    if user == '' and results.user is not None:
        print("Note: user is not a valid email address")

    with status(f"Connecting to database {cfg['database']['database']}"):
        init_db(**cfg['database'])

    if not results.nodrop:
        with status("Force dropping all tables"):
            drop_tables()

    with status("Creating tables. If you really want to start from scratch,"
                " do a make db_clear; make db_init"):
        create_tables()

    for model in Base.metadata.tables:
        print('    -', model)

    with status(f"Creating permissions"):
        model_util.setup_permissions()
import requests

from baselayer.app.env import load_env
from baselayer.app.model_util import status, create_tables, drop_tables
from social_tornado.models import TornadoStorage
from skyportal.models import init_db, Base, DBSession, Obj, User
from skyportal.model_util import setup_permissions, create_token
from skyportal.tests import api
from baselayer.tools.test_frontend import verify_server_availability

if __name__ == "__main__":
    """Insert test data"""
    env, cfg = load_env()
    basedir = Path(os.path.dirname(__file__)) / ".."

    with status(f"Connecting to database {cfg['database']['database']}"):
        init_db(**cfg["database"])

    with status("Dropping all tables"):
        drop_tables()

    with status("Creating tables"):
        create_tables()

    for model in Base.metadata.tables:
        print("    -", model)

    with status(f"Creating permissions"):
        setup_permissions()

    with status(f"Creating dummy users"):