Exemple #1
0
def test_pair_predict(pair_model_path, target_probe_path, target_gallery_path,
                      pid_path, score_path):
    # todo
    print(
        "before  load_model:----------------------------------------------------------------- "
    )
    model = load_model("./market_pair_pretrain.h5",
                       custom_objects={'triplet_hard_loss': triplet_hard_loss})
    print(
        "model finished:----------------------------------------------------------------- "
    )
    # model = ResNet50(weights='imagenet', include_top=False, input_tensor=Input(shape=(224, 224, 3)))
    #model = Model(inputs=[model.layers[0].get_input_at(0)],
    #              outputs=[model.get_layer('ave_pooled_part').get_output_at(0)])
    for layer in model.layers:
        print("!!!!:", layer)
    print("@@@@@", model.layers[-5])
    #model = Model(inputs=[model.layers[0].get_input_at(0)],
    #              outputs=[model.layers[-4].get_output_at(0)] )

    global_feature = model.layers[-5].get_output_at(0)
    feature1 = GlobalAveragePooling2D(name='ave_pooled')(global_feature)

    model = Model(inputs=[model.input], outputs=[feature1])
    # model = Model(inputs=[model.input], outputs=[model.get_layer('avg_pool').output])
    print(
        "before  test_predict:----------------------------------------------------------------- "
    )
    test_predict(model, target_probe_path, target_gallery_path, pid_path,
                 score_path)
Exemple #2
0
def test_pair_predict(pair_model_path, target_probe_path, target_gallery_path, pid_path, score_path):
    # todo
    model = load_model(pair_model_path, custom_objects={'focal_loss_fixed': focal_loss_fixed})
    # model = ResNet50(weights='imagenet', include_top=False, input_tensor=Input(shape=(224, 224, 3)))
    model = Model(inputs=[model.get_layer('resnet50').get_input_at(0)],
                  outputs=[model.get_layer('resnet50').get_output_at(0)])
    # model = Model(inputs=[model.input], outputs=[model.get_layer('avg_pool').output])
    test_predict(model, target_probe_path, target_gallery_path, pid_path, score_path)
Exemple #3
0
def test_rank_predict(rank_model_path, target_probe_path, target_gallery_path,
                      pid_path, score_path):
    model = load_model(
        rank_model_path,
        custom_objects={'cross_entropy_loss': cross_entropy_loss})
    model = Model(inputs=[model.get_layer('resnet50').get_input_at(0)],
                  outputs=[model.get_layer('resnet50').get_output_at(0)])
    test_predict(model, target_probe_path, target_gallery_path, pid_path,
                 score_path)
Exemple #4
0
def test_rank_predict(rank_model_path, target_probe_path, target_gallery_path, pid_path, score_path):
    model = load_model(rank_model_path, custom_objects={'cross_entropy_loss': cross_entropy_loss})
    for layer in model.get_layer('resnet50').layers:
        if isinstance(layer, BatchNormalization):
            print(layer.get_weights())
            break
    model = Model(inputs=[model.get_layer('resnet50').get_input_at(0)],
                  outputs=[model.get_layer('resnet50').get_output_at(0)])
    test_predict(model, target_probe_path, target_gallery_path, pid_path, score_path)
Exemple #5
0
def test_pair_predict(pair_model_path, target_probe_path, target_gallery_path,
                      pid_path, score_path):
    model = load_model(pair_model_path)
    model = Model(inputs=[model.get_layer('resnet50').get_input_at(0)],
                  outputs=[model.get_layer('resnet50').get_output_at(0)])
    # model = Model(inputs=[model.input], outputs=[model.get_layer('avg_pool').output])
    return test_predict(model, target_probe_path, target_gallery_path,
                        pid_path, score_path)