def __init__(self,
                 name,
                 state_length,
                 network_config,
                 reinforce_config,
                 feature_len,
                 combine_decomposed_func,
                 is_sigmoid=False,
                 memory_resotre=True):
        super(SADQ_GQF, self).__init__()
        self.name = name
        #self.choices = choices
        self.network_config = network_config
        self.reinforce_config = reinforce_config

        self.memory = ReplayBuffer_decom(self.reinforce_config.memory_size)

        self.learning = True
        self.explanation = False
        self.state_length = state_length

        self.features = 0
        self.feature_len = feature_len
        # Global
        self.steps = 0
        self.reward_history = []
        self.episode_time_history = []
        self.best_reward_mean = -maxsize
        self.episode = 0
        self.feature_len = feature_len
        self.features = None

        self.reset()
        self.memory_resotre = memory_resotre
        reinforce_summary_path = self.reinforce_config.summaries_path + "/" + self.name

        if not self.network_config.restore_network:
            clear_summary_path(reinforce_summary_path)
        else:
            self.restore_state()

        self.summary = SummaryWriter(log_dir=reinforce_summary_path)
        self.eval_model = feature_q_model(name, state_length, self.feature_len,
                                          self.network_config.output_shape,
                                          network_config)
        self.target_model = feature_q_model(name, state_length,
                                            self.feature_len,
                                            self.network_config.output_shape,
                                            network_config)
        #         self.target_model.eval_mode()

        self.beta_schedule = LinearSchedule(
            self.reinforce_config.beta_timesteps,
            initial_p=self.reinforce_config.beta_initial,
            final_p=self.reinforce_config.beta_final)

        self.epsilon_schedule = LinearSchedule(
            self.reinforce_config.epsilon_timesteps,
            initial_p=self.reinforce_config.starting_epsilon,
            final_p=self.reinforce_config.final_epsilon)
Exemple #2
0
    def __init__(self,
                 name,
                 state_length,
                 network_config,
                 reinforce_config,
                 reward_num,
                 combine_decomposed_func,
                 memory_resotre=True):
        super(SADQAdaptive, self).__init__()
        self.name = name
        #self.choices = choices
        self.network_config = network_config
        self.reinforce_config = reinforce_config
        if self.reinforce_config.use_prior_memory:
            self.memory = PrioritizedReplayBuffer(
                self.reinforce_config.memory_size, 0.6)
        else:
            self.memory = ReplayBuffer(self.reinforce_config.memory_size)
        self.learning = True
        self.state_length = state_length

        # Global
        self.steps = 0
        self.best_reward_mean = 0
        self.episode = 0
        self.combine_decomposed_reward = combine_decomposed_func
        self.reward_num = reward_num

        self.reset()
        self.memory_resotre = memory_resotre
        reinforce_summary_path = self.reinforce_config.summaries_path + "/" + self.name

        if not self.network_config.restore_network:
            clear_summary_path(reinforce_summary_path)
        else:
            self.restore_state()

        self.summary = SummaryWriter(log_dir=reinforce_summary_path)

        self.target_model = DQNModel(self.name + "_target",
                                     self.network_config, use_cuda)
        self.eval_model = DQNModel(self.name + "_eval", self.network_config,
                                   use_cuda)
        #         self.target_model.eval_mode()

        self.beta_schedule = LinearSchedule(
            self.reinforce_config.beta_timesteps,
            initial_p=self.reinforce_config.beta_initial,
            final_p=self.reinforce_config.beta_final)

        self.epsilon_schedule = LinearSchedule(
            self.reinforce_config.epsilon_timesteps,
            initial_p=self.reinforce_config.starting_epsilon,
            final_p=self.reinforce_config.final_epsilon)
Exemple #3
0
    def initialize(self):
        # Create the replay buffer
        if self.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.prioritized_replay_alpha)
            if self.prioritized_replay_beta_iters is None:
                self.prioritized_replay_beta_iters = self.max_timesteps
            self.beta_schedule = LinearSchedule(
                self.prioritized_replay_beta_iters,
                initial_p=self.prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size)
            self.beta_schedule = None
        # Create the schedule for exploration starting from 1.
        # self.exploration = LinearSchedule(schedule_timesteps=int(self.exploration_fraction * self.max_timesteps),
        #                                   initial_p=1.0,
        #                                   final_p=self.exploration_final_eps)

        self.exploration = ConstantSchedule(self.exploration_final_eps)
        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()

        return 'initialize() complete'
    def __init__(self,
                 mem_queue,
                 max_timesteps=1000000,
                 buffer_size=50000,
                 batch_size=32,
                 prioritized_replay=False,
                 prioritized_replay_alpha=0.6,
                 prioritized_replay_beta0=0.4,
                 prioritized_replay_beta_iters=None,
                 prioritized_replay_eps=1e-6):

        threading.Thread.__init__(self)
        self.mem_queue = mem_queue
        self.prioritized_replay = prioritized_replay
        self.batch_size = batch_size
        self.batch_idxes = None
        self.prioritized_replay_eps = prioritized_replay_eps

        # Create the replay buffer
        if prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
            if prioritized_replay_beta_iters is None:
                prioritized_replay_beta_iters = max_timesteps
            self.beta_schedule = LinearSchedule(
                prioritized_replay_beta_iters,
                initial_p=prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(buffer_size)
            self.beta_schedule = None
Exemple #5
0
    def __init__(self, is_chief, env, model, config, should_render=True):
        self.config = config
        self.is_chief = is_chief
        self.env = env
        self.should_render = should_render
        self.act, self.train, self.update_target, self.debug = multi_deepq.build_train(
                make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
                q_func=model,
                num_actions=env.action_space.n,
                gamma=config.gamma,
                optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate),
                reuse=(not is_chief),
                )

        self.max_iteraction_count = int(self.config.num_iterations)

        # Create the replay buffer
        self.replay_buffer = ReplayBuffer(config.replay_size)
        if self.config.exploration_schedule == "constant":
            self.exploration = ConstantSchedule(0.1)
        elif self.config.exploration_schedule == "linear":
            # Create the schedule for exploration starting from 1 (every action is random) down to
            # 0.02 (98% of actions are selected according to values predicted by the model).
            self.exploration = LinearSchedule(
                    schedule_timesteps=self.config.num_iterations / 4, initial_p=1.0, final_p=0.02)
        elif self.config.exploration_schedule == "piecewise":
            approximate_num_iters = self.config.num_iterations
            self.exploration = PiecewiseSchedule([
                (0, 1.0),
                (approximate_num_iters / 50, 0.1),
                (approximate_num_iters / 5, 0.01)
            ], outside_value=0.01)
        else:
            raise ValueError("Bad exploration schedule")
 def __init__(self, model, opt, learning=True):
     super().__init__()
     self.memory = PrioritizedReplayBuffer(100000, 0.6)
     self.previous_state = None
     self.previous_action = None
     self.previous_legal_actions = None
     self.step = 0
     self.model_vae = model[0]
     self.model_dqn = model[1]
     self.model_dqn_target = model[2]
     self.opt_vae = opt[0]
     self.opt_dqn = opt[1]
     self.loss_vae = 0
     self.loss_dqn = 0
     self.batch_size = 32
     self.max_tile = 0
     self.totalCorrect = 0
     self.total = 0
     self.acc = 0
     self.beta = 0.7
     #self.test_q = 0
     self.epsilon_schedule = LinearSchedule(500000,
                                            initial_p=0.99,
                                            final_p=0.01)
     self.learning = learning
Exemple #7
0
    def __init__(self, name, choices, network_config, reinforce_config):
        super(PGAdaptive, self).__init__()
        self.name = name
        self.choices = choices
        self.network_config = network_config
        self.reinforce_config = reinforce_config
        self.update_frequency = reinforce_config.update_frequency

        self.replay_memory = Memory(self.reinforce_config.batch_size)

        self.steps = 0
        self.total_reward = 0

        self.previous_state = None
        self.previous_action = None
        self.clear_rewards()

        self.model = ActorModel(self.name + "_actor", self.network_config)
        self.summary = SummaryWriter(
            log_dir=self.reinforce_config.summaries_path + "/" + self.name)

        self.episode = 0
        self.epsilon_schedule = LinearSchedule(
            10 * 1000,
            initial_p=self.reinforce_config.starting_epsilon,
            final_p=0.1)
Exemple #8
0
    def __init__(self,
        env, 
        network_policy,
        gamma=1.0,
        exploration_fraction=0.02, exploration_final_eps=0.01, steps_total=50000000,
        size_buffer=1000000, prioritized_replay=True, alpha_prioritized_replay=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6,
        type_optimizer='Adam', lr=5e-4, eps=1.5e-4,
        time_learning_starts=20000, freq_targetnet_update=8000, freq_train=4, size_batch=32,
        callback=None, load_path=None, # for debugging
        device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
        seed=42,
        **network_kwargs):

        super(DQN, self).__init__(env, gamma, seed)
        self.create_replay_buffer(prioritized_replay, prioritized_replay_eps, size_buffer, alpha_prioritized_replay, prioritized_replay_beta0, prioritized_replay_beta_iters, steps_total)
        self.exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * steps_total), initial_p=1.0, final_p=exploration_final_eps)
        
        self.network_policy = network_policy # an instance of DQN_NETWORK, which contains an instance of FEATURE_EXTRACTOR and 1 additional head
        self.optimizer = eval('optim.%s' % type_optimizer)(self.network_policy.parameters(), lr=lr, eps=eps)

        # initialize target network
        self.network_target = copy.deepcopy(self.network_policy)
        for param in self.network_target.parameters():
            param.requires_grad = False
        self.network_target.eval()

        self.size_batch = size_batch
        self.time_learning_starts = time_learning_starts
        self.freq_train = freq_train
        self.freq_targetnet_update = freq_targetnet_update
        self.t, self.steps_total = 0, steps_total
        self.device = device
        self.step_last_print, self.time_last_print = 0, None
Exemple #9
0
    def __init__(self, config, env_creator):
        self.config = config
        self.local_timestep = 0
        self.episode_rewards = [0.0]
        self.episode_lengths = [0.0]

        if "cartpole" in self.config["env_config"]:
            self.env = env_creator(self.config["env_config"])
        else:
            self.env = wrap_deepmind(
                env_creator(self.config["env_config"]),
                clip_rewards=False, frame_stack=True, scale=True)
        self.obs = self.env.reset()

        self.sess = U.make_session()
        self.sess.__enter__()

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph
        observation_space_shape = self.env.observation_space.shape
        def make_obs_ph(name):
            return BatchInput(observation_space_shape, name=name)

        if "cartpole" in self.config["env_config"]:
            q_func = models.mlp([64])
        else:
            q_func = models.cnn_to_mlp(
                convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
                hiddens=[256],
                dueling=True,
            )

        act, self.train, self.update_target, debug = build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=self.env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=self.config["lr"]),
            gamma=self.config["gamma"],
            grad_norm_clipping=10,
            param_noise=False
        )

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': self.env.action_space.n,
        }

        self.act = ActWrapper(act, act_params)

        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(
            schedule_timesteps=int(self.config["exploration_fraction"] * self.config["schedule_max_timesteps"]),
            initial_p=1.0,
            final_p=self.config["exploration_final_eps"])

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()
Exemple #10
0
    def __init__(self, identifier, actions, observation_shape, num_steps, x=0.0, y=0.0):
        self.id = identifier
        self.actions = actions
        self.x = x
        self.y = y
        self.yellow_steps = 0
        self.postponed_action = None
        self.obs = None
        self.current_action = None
        self.weights = np.ones(32)
        self.td_errors = np.ones(32)

        self.pre_train = 2500
        self.prioritized = False
        self.prioritized_eps = 1e-4
        self.batch_size = 32
        self.buffer_size = 30000
        self.learning_freq = 500
        self.target_update = 5000

        # Create all the functions necessary to train the model
        self.act, self.train, self.update_target, self.debug = deepq.build_train(
            make_obs_ph=lambda name: TrafficTfInput(observation_shape, name=name),
            q_func=dueling_model,
            num_actions=len(actions),
            optimizer=tf.train.AdamOptimizer(learning_rate=1e-4, epsilon=1e-4),
            gamma=0.99,
            double_q=True,
            scope="deepq" + identifier
        )

        # Create the replay buffer
        if self.prioritized:
            self.replay_buffer = PrioritizedReplayBuffer(size=self.buffer_size, alpha=0.6)
            self.beta_schedule = LinearSchedule(num_steps // 4, initial_p=0.4, final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size)

        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        self.exploration = LinearSchedule(schedule_timesteps=int(num_steps * 0.1), initial_p=1.0, final_p=0.01)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()
Exemple #11
0
    def __init__(self, name, choices, network_config, reinforce_config):
        super(DQNAdaptive, self).__init__()
        self.name = name
        self.choices = choices
        self.network_config = network_config
        self.reinforce_config = reinforce_config

        self.memory = PrioritizedReplayBuffer(
            self.reinforce_config.memory_size, 0.6)
        self.learning = True
        self.explanation = False

        # Global
        self.steps = 0
        self.reward_history = []
        self.episode_time_history = []
        self.best_reward_mean = -maxsize
        self.episode = 0

        self.reset()

        reinforce_summary_path = self.reinforce_config.summaries_path + "/" + self.name

        if not self.network_config.restore_network:
            clear_summary_path(reinforce_summary_path)
        else:
            self.restore_state()

        self.summary = SummaryWriter(log_dir=reinforce_summary_path)

        self.target_model = DQNModel(self.name + "_target",
                                     self.network_config, use_cuda)
        self.eval_model = DQNModel(self.name + "_eval", self.network_config,
                                   use_cuda)

        self.beta_schedule = LinearSchedule(
            self.reinforce_config.beta_timesteps,
            initial_p=self.reinforce_config.beta_initial,
            final_p=self.reinforce_config.beta_final)

        self.epsilon_schedule = LinearSchedule(
            self.reinforce_config.epsilon_timesteps,
            initial_p=self.reinforce_config.starting_epsilon,
            final_p=self.reinforce_config.final_epsilon)
Exemple #12
0
 def __init__(self,
              logdir,
              replay_alpha=0.6,
              replay_beta=0.4,
              t_beta_max=int(1e7),
              **kwargs):
     """Init."""
     super().__init__(logdir, **kwargs)
     self.buffer = PrioritizedReplayBuffer(self.buffer, alpha=replay_alpha)
     self.data_manager.buffer = self.buffer
     self.beta_schedule = LinearSchedule(t_beta_max, 1.0, replay_beta)
Exemple #13
0
 def create_replay_buffer(self, prioritized_replay, prioritized_replay_eps, size_buffer, alpha_prioritized_replay, prioritized_replay_beta0, prioritized_replay_beta_iters, steps_total):
     self.prioritized_replay = prioritized_replay
     self.prioritized_replay_eps = prioritized_replay_eps
     if prioritized_replay:
         self.replay_buffer = PrioritizedReplayBuffer(size_buffer, alpha=alpha_prioritized_replay)
         if prioritized_replay_beta_iters is None:
             prioritized_replay_beta_iters = steps_total
         self.beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0)
     else:
         self.replay_buffer = ReplayBuffer(size_buffer)
         self.beta_schedule = None
     pass
Exemple #14
0
    def _build_replay_buffer(self):
        # Create the replay buffer
        if self.prioritized_replay:
            replay_buffer = PrioritizedReplayBuffer(self.memory_size, alpha=self.prioritized_replay_alpha)
            if self.prioritized_replay_beta_iters is None:
                self.prioritized_replay_beta_iters = self.prioritized_replay_iter
            self.beta_schedule = LinearSchedule(self.prioritized_replay_beta_iters,
                                                initial_p=self.prioritized_replay_beta0,
                                                final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(self.memory_size)
            self.beta_schedule = None

        return replay_buffer
Exemple #15
0
    def __init__(self, index, is_chief, env, model, queue, config, logger, episode_logger, should_render=False):
        self.config = config
        self.is_chief = is_chief
        self.env = env
        self.global_step = tf.train.get_global_step()
        self.should_render = should_render
        self.logger = logger
        self.episode_logger = episode_logger

        self.log_frequency = 10

        with tf.device('/cpu:0'):
            self.act, self.update_params, self.debug = qdqn.build_act(
                    make_obs_ph=lambda name: U.Uint8Input(self.env.observation_space.shape, name=name),
                    q_func=model,
                    num_actions=self.env.action_space.n,
                    scope="actor_{}".format(index),
                    learner_scope="learner",
                    reuse=False)

        with tf.device('/cpu:0'):
            obs_t_input = tf.placeholder(tf.uint8, self.env.observation_space.shape, name="obs_t")
            act_t_ph = tf.placeholder(tf.int32, self.env.action_space.shape, name="action")
            rew_t_ph = tf.placeholder(tf.float32, [], name="reward")
            obs_tp1_input = tf.placeholder(tf.uint8, self.env.observation_space.shape, name="obs_tp1")
            done_mask_ph = tf.placeholder(tf.float32, [], name="done")
            global_step_ph = tf.placeholder(tf.int32, [], name="sample_global_step")
            enqueue_op = queue.enqueue(
                    [obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, global_step_ph])
            self.enqueue = U.function(
                    [obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, global_step_ph], enqueue_op)

        self.max_iteration_count = self.config.num_iterations

        if self.config.exploration_schedule == "constant":
            self.exploration = ConstantSchedule(0.1)
        elif self.config.exploration_schedule == "linear":
            # Create the schedule for exploration starting from 1 (every action is random) down to
            # 0.02 (98% of actions are selected according to values predicted by the model).
            self.exploration = LinearSchedule(
                    schedule_timesteps=self.config.num_iterations / 4, initial_p=1.0, final_p=0.02)
        elif self.config.exploration_schedule == "piecewise":
            approximate_num_iters = self.config.num_iterations
            self.exploration = PiecewiseSchedule([
                (0, 1.0),
                (approximate_num_iters / 50, 0.1),
                (approximate_num_iters / 5, 0.01)
            ], outside_value=0.01)
        else:
            raise ValueError("Bad exploration schedule")
Exemple #16
0
 def make_replay_buffer(self):
     if self.config["prioritized_replay"]:
         self.replay_buffer = PrioritizedReplayBuffer(
             self.config["buffer_size"],
             alpha=self.config["prioritized_replay_alpha"])
         if self.config["prioritized_replay_beta_iters"] is None:
             self.config["prioritized_replay_beta_iters"] = self.config[
                 "max_timesteps"]
         self.beta_schedule = LinearSchedule(
             self.config["prioritized_replay_beta_iters"],
             initial_p=self.config["prioritized_replay_beta0"],
             final_p=1.0)
     else:
         self.replay_buffer = ReplayBuffer(self.config["buffer_size"])
         self.beta_schedule = None
    def __init__(self, size, alpha, epsilon, timesteps, initial_p, final_p):
        super(DoublePrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha
        self._epsilon = epsilon
        self._beta_schedule = LinearSchedule(timesteps, initial_p=initial_p, final_p=final_p)
        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

        self._it_sum2 = SumSegmentTree(it_capacity)
        self._it_min2 = MinSegmentTree(it_capacity)
        self._max_priority2 = 1.0
Exemple #18
0
def learn(env, args):
    ob = env.reset()
    ob_shape = ob.shape
    num_action = int(env.action_space.n)

    agent = TestAgent(ob_shape, num_action, args)
    replay_buffer = PrioritizedReplayBuffer(args.buffer_size, alpha=args.prioritized_replay_alpha)
    args.prioritized_replay_beta_iters = args.max_timesteps
    beta_schedule = LinearSchedule(args.prioritized_replay_beta_iters, 
                                    initial_p=args.prioritized_replay_beta0, 
                                    final_p=1.0)

    episode_rewards = [0.0]
    saved_mean_reward = None
    n_step_seq = []

    agent.sample_noise()
    agent.update_target()

    for t in range(args.max_timesteps):
        action = agent.act(ob)
        new_ob, rew, done, _ = env.step(action)
        replay_buffer.add(ob, action, rew, new_ob, float(done))
        ob = new_ob

        episode_rewards[-1] += rew
        if done:
            obs = env.reset()
            episode_rewards.append(0.0)
            reset = True

        if t > args.learning_starts and t % args.replay_period == 0:
            experience = replay_buffer.sample(args.batch_size, beta=beta_schedule.value(t))
            (obs, actions, rewards, obs_next, dones, weights, batch_idxes) = experience
            agent.sample_noise()
            kl_errors = agent.update(obs, actions, rewards, obs_next, dones, weights)
            replay_buffer.update_priorities(batch_idxes, np.abs(kl_errors) + 1e-6)

        if t > args.learning_starts and t % args.target_network_update_freq == 0:
            agent.update_target()  

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and args.print_freq is not None and len(episode_rewards) % args.print_freq == 0:
            print('steps {} episodes {} mean reward {}'.format(t, num_episodes, mean_100ep_reward))
Exemple #19
0
 def __init__(self, model, opt, learning=True):
     super().__init__()
     self.memory = ReplayBuffer(3000)
     self.previous_state = None
     self.previous_action = None
     self.previous_legal_actions = None
     self.step = 0
     self.model = model
     self.opt = opt
     self.loss = 0
     self.batch_size = 10
     self.test_q = 0
     self.max_tile = 0
     #self.test_q = 0
     self.epsilon_schedule = LinearSchedule(1000000,
                                            initial_p=0.99,
                                            final_p=0.01)
     self.learning = learning
Exemple #20
0
    def __init__(self,
                 statesize,
                 actionsize,
                 heros,
                 update_target_period=100,
                 scope="deepq",
                 initial_p=1.0,
                 final_p=0.02):
        self.act = None
        self.train = None
        self.update_target = None
        self.debug = None

        self.state_size = statesize
        self.action_size = actionsize  # 50=8*mov+10*attack+10*skill1+10*skill2+10*skill3+回城+hold
        self.memory = PrioritizedReplayBuffer(500000, alpha=0.6)
        self.gamma = 0.9  # discount rate
        self.epsilon = 1.0  # exploration rate
        self.e_decay = .99
        self.e_min = 0.05
        self.learning_rate = 0.01
        self.heros = heros
        self.scope = scope
        self.model = self._build_model

        # todo:英雄1,2普攻距离为2,后续需修改
        self.att_dist = 2

        self.act_times = 0
        self.train_times = 0
        self.update_target_period = update_target_period

        self.exploration = LinearSchedule(schedule_timesteps=3000,
                                          initial_p=initial_p,
                                          final_p=final_p)

        self.battle_rewards = []
        self.loss = []
Exemple #21
0
    def __init__(self, name, choices, reward_types, network_config,
                 reinforce_config):
        super(HRAAdaptive, self).__init__()
        self.name = name
        self.choices = choices
        self.network_config = network_config
        self.reinforce_config = reinforce_config
        self.update_frequency = reinforce_config.update_frequency

        self.replay_memory = PrioritizedReplayBuffer(
            self.reinforce_config.memory_size, 0.6)
        self.learning = True
        self.explanation = False

        self.steps = 0
        self.previous_state = None
        self.previous_action = None
        self.reward_types = reward_types

        self.clear_rewards()

        self.total_reward = 0

        self.eval_model = HRAModel(self.name + "_eval", self.network_config)
        self.target_model = HRAModel(self.name + "_target",
                                     self.network_config)

        clear_summary_path(self.reinforce_config.summaries_path + "/" +
                           self.name)
        self.summary = SummaryWriter(
            log_dir=self.reinforce_config.summaries_path + "/" + self.name)

        self.episode = 0
        self.beta_schedule = LinearSchedule(10 * 1000,
                                            initial_p=0.2,
                                            final_p=1.0)
Exemple #22
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act, debug['q_func'], debug['obs']
Exemple #23
0
    with U.make_session(8):
        # Create the environment
        env = gym.make("CartPole-v0")
        # Create all the functions necessary to train the model
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: U.BatchInput(env.observation_space.shape, name=name),
            q_func=model,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
            param_noise=False
        )
        # Create the replay buffer
        replay_buffer = PrioritizedReplayBuffer(50000, alpha=0.6)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000, initial_p=1.0, final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        tvars = tf.trainable_variables()
        tvars_vals = U.get_session().run(tvars)

        for var, val in zip(tvars, tvars_vals):
            print(var.name, val)

        episode_rewards = [0.0]
        loss_array = []
        obs = env.reset()
        for t in itertools.count():
Exemple #24
0
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None,
          demo_replay=[]
          ):
  """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((64, 64), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10
  )
  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                               initial_p=1.0,
                               final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = player_relative

  obs = common.init(env, obs)

  group_id = 0
  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join(td, "model")

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs['update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      # custom process for DefeatZerglingsAndBanelings

      obs, screen, player = common.select_marine(env, obs)

      action = act(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
      reset = False
      rew = 0

      new_action = None

      obs, new_action = common.marine_action(env, obs, player, action)
      army_count = env._obs.observation.player_common.army_count

      try:
        if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
          obs = env.step(actions=new_action)
        else:
          new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
          obs = env.step(actions=new_action)
      except Exception as e:
        #print(e)
        1 # Do nothing

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = player_relative

      rew += obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      selected = obs[0].observation["screen"][_SELECTED]
      player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()

      if(len(player_y)>0):
        player = [int(player_x.mean()), int(player_y.mean())]

      if(len(player) == 2):

        if(player[0]>32):
          new_screen = common.shift(LEFT, player[0]-32, new_screen)
        elif(player[0]<32):
          new_screen = common.shift(RIGHT, 32 - player[0], new_screen)

        if(player[1]>32):
          new_screen = common.shift(UP, player[1]-32, new_screen)
        elif(player[1]<32):
          new_screen = common.shift(DOWN, 32 - player[1], new_screen)

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      screen = new_screen

      episode_rewards[-1] += rew
      reward = episode_rewards[-1]

      if done:
        print("Episode Reward : %s" % episode_rewards[-1])
        obs = env.reset()
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

        screen = player_relative

        group_list = common.init(env, obs)

        # Select all marines first
        #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
        episode_rewards.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
          experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
        else:
          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
          weights, batch_idxes = np.ones_like(rewards), None
        td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("reward", reward)
        logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
        logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts and
              num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log("Saving model due to mean reward increase: {} -> {}".format(
              saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
Exemple #25
0
    def __init__(
            self,
            env,
            # observation_space,
            # action_space,
            network=None,
            scope='deepq',
            seed=None,
            lr=None,  # Was 5e-4
            lr_mc=5e-4,
            total_episodes=None,
            total_timesteps=100000,
            buffer_size=50000,
            exploration_fraction=0.1,
            exploration_final_eps=None,  # was 0.02
            train_freq=1,
            train_log_freq=100,
            batch_size=32,
            print_freq=100,
            checkpoint_freq=10000,
            # checkpoint_path=None,
            learning_starts=1000,
            gamma=None,
            target_network_update_freq=500,
            prioritized_replay=False,
            prioritized_replay_alpha=0.6,
            prioritized_replay_beta0=0.4,
            prioritized_replay_beta_iters=None,
            prioritized_replay_eps=1e-6,
            save_path=None,
            load_path=None,
            save_reward_threshold=None,
            **network_kwargs):
        super().__init__(env, seed)
        if train_log_freq % train_freq != 0:
            raise ValueError(
                'Train log frequency should be a multiple of train frequency')
        elif checkpoint_freq % train_log_freq != 0:
            raise ValueError(
                'Checkpoint freq should be a multiple of train log frequency, or model saving will not be logged properly'
            )
        print('init dqnlearningagent')
        self.train_log_freq = train_log_freq
        self.scope = scope
        self.learning_starts = learning_starts
        self.save_reward_threshold = save_reward_threshold
        self.batch_size = batch_size
        self.train_freq = train_freq
        self.total_episodes = total_episodes
        self.total_timesteps = total_timesteps
        # TODO: scope not doing anything.
        if network is None and 'lunar' in env.unwrapped.spec.id.lower():
            if lr is None:
                lr = 1e-3
            if exploration_final_eps is None:
                exploration_final_eps = 0.02
            #exploration_fraction = 0.1
            #exploration_final_eps = 0.02
            target_network_update_freq = 1500
            #print_freq = 100
            # num_cpu = 5
            if gamma is None:
                gamma = 0.99

            network = 'mlp'
            network_kwargs = {
                'num_layers': 2,
                'num_hidden': 64,
            }

        self.target_network_update_freq = target_network_update_freq
        self.gamma = gamma

        get_session()
        # set_global_seeds(seed)
        # TODO: Check whether below is ok to substitue for set_global_seeds.
        try:
            import tensorflow as tf
            tf.set_random_seed(seed)
        except ImportError:
            pass

        self.q_func = build_q_func(network, **network_kwargs)

        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph

        def make_obs_ph(name):
            return ObservationInput(env.observation_space, name=name)

        act, self.train, self.train_mc, self.update_target, debug = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=self.q_func,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            optimizer_mc=tf.train.AdamOptimizer(learning_rate=lr_mc),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=False,
            scope=scope,
            # reuse=reuse,
        )

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': self.q_func,
            'num_actions': env.action_space.n,
        }

        self._act = ActWrapper(act, act_params)

        self.print_freq = print_freq
        self.checkpoint_freq = checkpoint_freq
        # Create the replay buffer
        self.prioritized_replay = prioritized_replay
        self.prioritized_replay_eps = prioritized_replay_eps

        if self.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                buffer_size,
                alpha=prioritized_replay_alpha,
            )
            if prioritized_replay_beta_iters is None:
                if total_episodes is not None:
                    raise NotImplementedError(
                        'Need to check how to set exploration based on episodes'
                    )
                prioritized_replay_beta_iters = total_timesteps
            self.beta_schedule = LinearSchedule(
                prioritized_replay_beta_iters,
                initial_p=prioritized_replay_beta0,
                final_p=1.0,
            )
        else:
            self.replay_buffer = ReplayBuffer(buffer_size)
            self.replay_buffer_mc = ReplayBuffer(buffer_size)
            self.beta_schedule = None
        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(
            schedule_timesteps=int(
                exploration_fraction *
                total_timesteps if total_episodes is None else total_episodes),
            initial_p=1.0,
            final_p=exploration_final_eps,
        )

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        self.update_target()

        self.episode_lengths = [0]
        self.episode_rewards = [0.0]
        self.discounted_episode_rewards = [0.0]
        self.start_values = [None]
        self.lunar_crashes = [0]
        self.lunar_goals = [0]
        self.saved_mean_reward = None

        self.td = None
        if save_path is None:
            self.td = tempfile.mkdtemp()
            outdir = self.td
            self.model_file = os.path.join(outdir, "model")
        else:
            outdir = os.path.dirname(save_path)
            os.makedirs(outdir, exist_ok=True)
            self.model_file = save_path
        print('DQN agent saving to:', self.model_file)
        self.model_saved = False

        if tf.train.latest_checkpoint(outdir) is not None:
            # TODO: Check scope addition
            load_variables(self.model_file, scope=self.scope)
            # load_variables(self.model_file)
            logger.log('Loaded model from {}'.format(self.model_file))
            self.model_saved = True
            raise Exception('Check that we want to load previous model')
        elif load_path is not None:
            # TODO: Check scope addition
            load_variables(load_path, scope=self.scope)
            # load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        self.train_log_file = None
        if save_path and load_path is None:
            self.train_log_file = self.model_file + '.log.csv'
            with open(self.train_log_file, 'w') as f:
                cols = [
                    'episode',
                    't',
                    'td_max',
                    'td_mean',
                    '100ep_r_mean',
                    '100ep_r_mean_discounted',
                    '100ep_v_mean',
                    '100ep_n_crashes_mean',
                    '100ep_n_goals_mean',
                    'saved_model',
                    'smoothing',
                ]
                f.write(','.join(cols) + '\n')

        self.training_episode = 0
        self.t = 0
        self.episode_t = 0
        """
        n = observation_space.n
        m = action_space.n
        self.Q = np.zeros((n, m))

        self._lr_schedule = lr_schedule
        self._eps_schedule = eps_schedule
        self._boltzmann_schedule = boltzmann_schedule
        """

        # Make placeholder for Q values
        self.q_values = debug['q_values']
Exemple #26
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.01,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          callback=None,
          num_optimisation_steps=40):
    """Train a deepq model.

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput((env.observation_space.shape[0] * 2, ), name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()
    episode_max_rewards = [env.reward_max]
    episode_rewards = [0.0]
    saved_mean_reward_diff = None  # difference in saved reward
    obs = env.reset(seed=np.random.randint(0, 1000))
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        episode_buffer = [None] * env.n
        episode_timestep = 0
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            action = act(np.concatenate([obs, env.goal])[None],
                         update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            episode_buffer[episode_timestep] = (obs, action, rew, new_obs,
                                                float(done))
            episode_timestep += 1
            replay_buffer.add(np.concatenate([obs, env.goal]), action, rew,
                              np.concatenate([new_obs, env.goal]), float(done))
            obs = new_obs
            episode_rewards[-1] += rew
            num_episodes = len(episode_rewards)
            #######end of episode
            if done:
                for episode in range(episode_timestep):
                    obs1, action1, _, new_obs1, done1 = episode_buffer[episode]
                    goal_prime = new_obs1
                    rew1 = env.calculate_reward(new_obs1, goal_prime)
                    replay_buffer.add(np.concatenate([obs1, goal_prime]),
                                      action1, rew1,
                                      np.concatenate([new_obs1, goal_prime]),
                                      float(done1))
                episode_timestep = 0
                obs = env.reset(seed=np.random.randint(0, 1000))
                episode_rewards.append(0.0)
                episode_max_rewards.append(env.reward_max)
                #############Training Q
                if t > learning_starts and num_episodes % train_freq == 0:
                    for i in range(num_optimisation_steps):
                        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                        if prioritized_replay:
                            experience = replay_buffer.sample(
                                batch_size, beta=beta_schedule.value(t))
                            (obses_t, actions, rewards, obses_tp1, dones,
                             weights, batch_idxes) = experience
                        else:
                            obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                                batch_size)
                            weights, batch_idxes = np.ones_like(rewards), None
                        td_errors = train(obses_t, actions, rewards, obses_tp1,
                                          dones, weights)
                        if prioritized_replay:
                            new_priorities = np.abs(
                                td_errors) + prioritized_replay_eps
                            replay_buffer.update_priorities(
                                batch_idxes, new_priorities)
                #############Training Q target
                if t > learning_starts and num_episodes % target_network_update_freq == 0:
                    # Update target network periodically.
                    update_target()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            mean_100ep_max_reward = np.mean(episode_max_rewards[-101:-1])
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 100 episode max reward",
                                      mean_100ep_max_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100
                    and num_episodes % checkpoint_freq == 0):
                if saved_mean_reward_diff is None or mean_100ep_max_reward - mean_100ep_reward < saved_mean_reward_diff:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward difference decrease: {} -> {}"
                            .format(saved_mean_reward_diff,
                                    mean_100ep_max_reward - mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward_diff = mean_100ep_max_reward - mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward_diff))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
Exemple #27
0
def learn(env,
          q_func,
          beta1=0.9,
          beta2=0.999,
          epsilon=1e-8,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          exploration_schedule=None,
          start_lr=5e-4,
          end_lr=5e-4,
          start_step=0,
          end_step=1,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          model_directory=None,
          lamda=0.1):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    beta1: float
        beta1 parameter for adam
    beta2: float
        beta2 parameter for adam
    epsilon: float
        epsilon parameter for adam
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    exploration_schedule: Schedule
        a schedule for exploration chance
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    global_step = tf.Variable(0, trainable=False)
    lr = interpolated_decay(start_lr, end_lr, global_step, start_step,
                            end_step)
    act, train, update_target, debug = multiheaded_build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr,
                                         beta1=beta1,
                                         beta2=beta2,
                                         epsilon=epsilon),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        global_step=global_step,
        lamda=lamda,
    )
    tf.summary.FileWriter(logger.get_dir(), graph_def=sess.graph_def)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    if exploration_schedule is None:
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * max_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)
    else:
        exploration = exploration_schedule

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        if model_directory is None:
            model_directory = pathlib.Path(td)
        model_file = str(model_directory / "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            if isinstance(env.action_space, gym.spaces.MultiBinary):
                env_action = np.zeros(env.action_space.n)
                env_action[action] = 1
            else:
                env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    act.save(str(model_directory / "act_model.pkl"))
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return act
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          test_agent=1e6,
          param_noise=False,
          double=True,
          lambda_double=False,
          lam=0.2,
          targets=1,
          piecewise_schedule=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq_base.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=double,
        lambda_double=lambda_double,
        lam=lam,
        targets=targets,
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    if piecewise_schedule:
        exploration = PiecewiseSchedule(endpoints=[(0,1.0),(1e6,exploration_final_eps),(24e6,0.01)], outside_value=0.01)
    else:
        exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * 
                                      max_timesteps),
                                      initial_p=1.0,
                                      final_p=exploration_final_eps)
    # Initialize the parameters and copy them to the target network.
    U.initialize()
    targets_seq = np.array([i for i in range(targets)],dtype=np.int32)
    targets_lam = lam ** targets_seq
    for target in range(targets):
        update_target[target]()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    epinfobuf = deque(maxlen=100)
    test_flag = False


    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, info = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs
            maybeepinfo = info.get('episode')
            if maybeepinfo:
                epinfobuf.extend([maybeepinfo])
            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights, targets_lam)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                targets_seq = np.roll(targets_seq, 1)
                targets_lam = np.roll(targets_lam, -1)

                update_target[targets_seq[0]]()

            if t > learning_starts and t % test_agent == 0:
                test_flag = True

            if done and test_flag:

                nEpisodes = 50
                rewards = deque(maxlen=nEpisodes)
                for i in range(nEpisodes):
                    obs, done = env.reset(), False
                    episode_rew = 0
                    reward = 0
                    maybeepinfo = None
                    while maybeepinfo is None:
                        obs, rew, done, info = env.step(act(obs[None], stochastic=True, update_eps=0.001)[0])
                        maybeepinfo = info.get('episode')
                        if maybeepinfo:
                            reward = maybeepinfo['r']
                            rewards.extend([reward])
                        # time.sleep(0.01)
                    # print("Episode:", reward)
                logger.record_tabular("test_reward_mean", np.mean([rew for rew in rewards]))
                logger.record_tabular("steps", t)
                logger.dump_tabular()
                obs = env.reset()
                test_flag = False


            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                mean_reward = safemean([epinfo['r'] for epinfo in epinfobuf])

                logger.record_tabular("episode_reward_mean", mean_reward)
                logger.record_tabular("eplenmean" , safemean([epinfo['l'] for epinfo in epinfobuf]))
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                #logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_reward > saved_mean_reward or ((mean_reward >= saved_mean_reward) and mean_reward > 0):
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_reward
                    act.save()
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act
Exemple #29
0
    def __init__(self,
                 input_dims,
                 buffer_size,
                 hidden,
                 layers,
                 network_class,
                 polyak,
                 batch_size,
                 Q_lr,
                 pi_lr,
                 norm_eps,
                 norm_clip,
                 max_u,
                 action_l2,
                 clip_obs,
                 scope,
                 T,
                 rollout_batch_size,
                 subtract_goals,
                 relative_goals,
                 clip_pos_returns,
                 clip_return,
                 sample_transitions,
                 gamma,
                 temperature,
                 prioritization,
                 env_name,
                 alpha,
                 beta0,
                 beta_iters,
                 eps,
                 max_timesteps,
                 rank_method,
                 reuse=False,
                 **kwargs):
        """Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER).

        Args:
            input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the
                actions (u)
            buffer_size (int): number of transitions that are stored in the replay buffer
            hidden (int): number of units in the hidden layers
            layers (int): number of hidden layers
            network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic')
            polyak (float): coefficient for Polyak-averaging of the target network
            batch_size (int): batch size for training
            Q_lr (float): learning rate for the Q (critic) network
            pi_lr (float): learning rate for the pi (actor) network
            norm_eps (float): a small value used in the normalizer to avoid numerical instabilities
            norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip]
            max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u]
            action_l2 (float): coefficient for L2 penalty on the actions
            clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs]
            scope (str): the scope used for the TensorFlow graph
            T (int): the time horizon for rollouts
            rollout_batch_size (int): number of parallel rollouts per DDPG agent
            subtract_goals (function): function that subtracts goals from each other
            relative_goals (boolean): whether or not relative goals should be fed into the network
            clip_pos_returns (boolean): whether or not positive returns should be clipped
            clip_return (float): clip returns to be in [-clip_return, clip_return]
            sample_transitions (function) function that samples from the replay buffer
            gamma (float): gamma used for Q learning updates
            reuse (boolean): whether or not the networks should be reused
        """
        if self.clip_return is None:
            self.clip_return = np.inf

        self.create_actor_critic = import_function(self.network_class)

        input_shapes = dims_to_shapes(self.input_dims)
        self.dimo = self.input_dims['o']
        self.dimg = self.input_dims['g']
        self.dimu = self.input_dims['u']

        self.prioritization = prioritization
        self.env_name = env_name
        self.temperature = temperature
        self.rank_method = rank_method

        # Prepare staging area for feeding data to the model.
        stage_shapes = OrderedDict()
        for key in sorted(self.input_dims.keys()):
            if key.startswith('info_'):
                continue
            stage_shapes[key] = (None, *input_shapes[key])
        for key in ['o', 'g']:
            stage_shapes[key + '_2'] = stage_shapes[key]
        stage_shapes['r'] = (None, )
        stage_shapes['w'] = (None, )
        self.stage_shapes = stage_shapes

        # Create network.
        with tf.variable_scope(self.scope):
            self.staging_tf = StagingArea(
                dtypes=[tf.float32 for _ in self.stage_shapes.keys()],
                shapes=list(self.stage_shapes.values()))
            self.buffer_ph_tf = [
                tf.placeholder(tf.float32, shape=shape)
                for shape in self.stage_shapes.values()
            ]
            self.stage_op = self.staging_tf.put(self.buffer_ph_tf)

            self._create_network(reuse=reuse)

        # Configure the replay buffer.
        buffer_shapes = {
            key: (self.T if key != 'o' else self.T + 1, *input_shapes[key])
            for key, val in input_shapes.items()
        }
        buffer_shapes['g'] = (buffer_shapes['g'][0], self.dimg)
        buffer_shapes['ag'] = (self.T + 1, self.dimg)
        buffer_size = (self.buffer_size //
                       self.rollout_batch_size) * self.rollout_batch_size

        if self.prioritization == 'entropy':
            self.buffer = ReplayBufferEntropy(buffer_shapes, buffer_size,
                                              self.T, self.sample_transitions,
                                              self.prioritization,
                                              self.env_name)
        elif self.prioritization == 'tderror':
            self.buffer = PrioritizedReplayBuffer(buffer_shapes, buffer_size,
                                                  self.T,
                                                  self.sample_transitions,
                                                  alpha, self.env_name)
            if beta_iters is None:
                beta_iters = max_timesteps
            self.beta_schedule = LinearSchedule(beta_iters,
                                                initial_p=beta0,
                                                final_p=1.0)
        else:
            self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T,
                                       self.sample_transitions)
Exemple #30
0
    def _get_boltzmann_q(
            self,
            final_boltzmann_parameter,
            optimal_q=None,
            q_learning_episodes=10000,
            n_test_episodes=100,
            max_tries=10,
            verbose=False,
            logging=True,
    ):
        """Compute Q values for a boltzmann policy.

        Args:
            optimal_q (Optional[[[float]]]): Q values to use for computing
                boltzmann Q values using policy evaluation. If None,
                learn Q values using boltzmann exploration instead.

        """
        if optimal_q is not None:
            return self._get_boltzmann_q_policy_evaluation(
                boltzmann_parameter=final_boltzmann_parameter,
                optimal_q=optimal_q,
            )

        print('RESOLVING!!!!!!')

        from .policies import TabularQLearningAgent

        agent = TabularQLearningAgent(
            action_space=self.env.action_space,
            observation_space=self.env.observation_space,
            eps_schedule=LinearSchedule(
                schedule_timesteps=int(0.9 * q_learning_episodes),
                initial_p=0,
                final_p=final_boltzmann_parameter,
            ),
            lr_schedule=LinearSchedule(
                schedule_timesteps=int(0.9 * q_learning_episodes),
                initial_p=1.0,
                final_p=0.02,
            ),
        )
        for ep in range(q_learning_episodes):
            obs = self.env.reset()
            done = False
            cum_reward = 0
            while not done:
                next_action = agent.act(obs, explore=True)
                obs1, reward, done, _ = self.env.step(next_action)
                cum_reward += reward
                agent.update(
                    s=obs,
                    a=next_action,
                    s1=obs1,
                    r=reward,
                    done=done,
                )
                obs = obs1
            if verbose:
                print({
                    'ep': ep,
                    'lr': agent._lr,
                    'eps': agent._eps,
                    'q_norm': np.linalg.norm(agent.Q),
                    'cum_reward': cum_reward,
                })

        # Test learned agent.
        cum_rewards = []
        for _ in range(n_test_episodes):
            obs = self.env.reset()
            done = False
            cum_reward = 0
            while not done:
                next_action = agent.act(obs, explore=False)
                obs1, reward, done, _ = self.env.step(next_action)
                cum_reward += reward
                obs = obs1
            cum_rewards.append(cum_reward)
        test_reward = np.mean(cum_rewards)

        print('Mean Boltzmann reward: {}'.format(test_reward))

        return copy(agent.Q)