Exemple #1
0
    def __init__(self, is_chief, env, model, config, should_render=True):
        self.config = config
        self.is_chief = is_chief
        self.env = env
        self.should_render = should_render
        self.act, self.train, self.update_target, self.debug = multi_deepq.build_train(
                make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
                q_func=model,
                num_actions=env.action_space.n,
                gamma=config.gamma,
                optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate),
                reuse=(not is_chief),
                )

        self.max_iteraction_count = int(self.config.num_iterations)

        # Create the replay buffer
        self.replay_buffer = ReplayBuffer(config.replay_size)
        if self.config.exploration_schedule == "constant":
            self.exploration = ConstantSchedule(0.1)
        elif self.config.exploration_schedule == "linear":
            # Create the schedule for exploration starting from 1 (every action is random) down to
            # 0.02 (98% of actions are selected according to values predicted by the model).
            self.exploration = LinearSchedule(
                    schedule_timesteps=self.config.num_iterations / 4, initial_p=1.0, final_p=0.02)
        elif self.config.exploration_schedule == "piecewise":
            approximate_num_iters = self.config.num_iterations
            self.exploration = PiecewiseSchedule([
                (0, 1.0),
                (approximate_num_iters / 50, 0.1),
                (approximate_num_iters / 5, 0.01)
            ], outside_value=0.01)
        else:
            raise ValueError("Bad exploration schedule")
Exemple #2
0
    def __init__(self, index, is_chief, env, model, queue, config, logger, episode_logger, should_render=False):
        self.config = config
        self.is_chief = is_chief
        self.env = env
        self.global_step = tf.train.get_global_step()
        self.should_render = should_render
        self.logger = logger
        self.episode_logger = episode_logger

        self.log_frequency = 10

        with tf.device('/cpu:0'):
            self.act, self.update_params, self.debug = qdqn.build_act(
                    make_obs_ph=lambda name: U.Uint8Input(self.env.observation_space.shape, name=name),
                    q_func=model,
                    num_actions=self.env.action_space.n,
                    scope="actor_{}".format(index),
                    learner_scope="learner",
                    reuse=False)

        with tf.device('/cpu:0'):
            obs_t_input = tf.placeholder(tf.uint8, self.env.observation_space.shape, name="obs_t")
            act_t_ph = tf.placeholder(tf.int32, self.env.action_space.shape, name="action")
            rew_t_ph = tf.placeholder(tf.float32, [], name="reward")
            obs_tp1_input = tf.placeholder(tf.uint8, self.env.observation_space.shape, name="obs_tp1")
            done_mask_ph = tf.placeholder(tf.float32, [], name="done")
            global_step_ph = tf.placeholder(tf.int32, [], name="sample_global_step")
            enqueue_op = queue.enqueue(
                    [obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, global_step_ph])
            self.enqueue = U.function(
                    [obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, global_step_ph], enqueue_op)

        self.max_iteration_count = self.config.num_iterations

        if self.config.exploration_schedule == "constant":
            self.exploration = ConstantSchedule(0.1)
        elif self.config.exploration_schedule == "linear":
            # Create the schedule for exploration starting from 1 (every action is random) down to
            # 0.02 (98% of actions are selected according to values predicted by the model).
            self.exploration = LinearSchedule(
                    schedule_timesteps=self.config.num_iterations / 4, initial_p=1.0, final_p=0.02)
        elif self.config.exploration_schedule == "piecewise":
            approximate_num_iters = self.config.num_iterations
            self.exploration = PiecewiseSchedule([
                (0, 1.0),
                (approximate_num_iters / 50, 0.1),
                (approximate_num_iters / 5, 0.01)
            ], outside_value=0.01)
        else:
            raise ValueError("Bad exploration schedule")
Exemple #3
0
def main():
    exp_dir = './runs/podworld'

    # by default CSV logs will be created in OS temp directory
    logger.configure(dir=exp_dir,
                     format_strs=['stdout', 'log', 'csv', 'tensorboard'],
                     log_suffix=None)

    # create Atari environment, use no-op reset, max pool last two frames
    env = make_podworld('podworld-v0')

    # by default monitor will log episod reward and log
    env = bench.Monitor(env, logger.get_dir())

    learn_params = defaults.atari_breakout()
    learn_params['checkpoint_path'] = exp_dir
    learn_params['checkpoint_freq'] = 100000
    learn_params['print_freq'] = 10
    learn_params['exploration_scheduler'] = PiecewiseSchedule([ \
                (0,        1.0),
                (int(1e6), 0.1),
                (int(1e7), 0.01)
            ], outside_value=0.01)

    model = deepq.learn(env, total_timesteps=int(1e7), **learn_params)

    model.save('podworld_model.pkl')
    env.close()
Exemple #4
0
def updateEpsilon():
    epsilon = PiecewiseSchedule([(0, 1.0),
                                 (20000, 0.5),
                                 (50000, 0.25),
                                 (100000, 0.12),
                                 (500000, 0.05)
                                 ], outside_value=0.2)
    return epsilon
Exemple #5
0
def test_piecewise_schedule():
    ps = PiecewiseSchedule([(-5, 100), (5, 200), (10, 50), (100, 50), (200, -50)], outside_value=500)

    assert np.isclose(ps.value(-10), 500)
    assert np.isclose(ps.value(0), 150)
    assert np.isclose(ps.value(5), 200)
    assert np.isclose(ps.value(9), 80)
    assert np.isclose(ps.value(50), 50)
    assert np.isclose(ps.value(80), 50)
    assert np.isclose(ps.value(150), 0)
    assert np.isclose(ps.value(175), -25)
    assert np.isclose(ps.value(201), 500)
    assert np.isclose(ps.value(500), 500)

    assert np.isclose(ps.value(200 - 1e-10), -50)
def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--env', help='environment ID', default='Breakout')
    parser.add_argument('--seed', help='RNG seed', type=int, default=0)
    parser.add_argument('--prioritized', type=int, default=1)
    parser.add_argument('--num-timesteps', type=int, default=int(10e6))
    parser.add_argument('experiment_id')
    args = parser.parse_args()
    logging_directory = Path('./experiments/{}--{}'.format(args.experiment_id, args.env))
    if not logging_directory.exists():
        logging_directory.mkdir(parents=True)
    logger.configure(str(logging_directory), ['stdout', 'tensorboard', 'json'])
    model_directory = logging_directory / 'models'
    if not model_directory.exists():
        model_directory.mkdir(parents=True)
    set_global_seeds(args.seed)
    env_name = args.env + "NoFrameskip-v4"
    env = make_atari(env_name)
    env = bench.Monitor(env, logger.get_dir())
    env = deepq.wrap_atari_dqn(env)
    model = models.cnn_to_mlp(
        convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
        hiddens=[256],
    )
    exploration_schedule = PiecewiseSchedule(
        endpoints=[(0, 1), (1e6, 0.1), (5 * 1e6, 0.01)], outside_value=0.01)

    act = learn(
        env,
        q_func=model,
        beta1=0.9,
        beta2=0.99,
        epsilon=1e-4,
        max_timesteps=args.num_timesteps,
        buffer_size=1000000,
        exploration_schedule=exploration_schedule,
        start_lr=1e-4,
        end_lr=5 * 1e-5,
        start_step=1e6,
        end_step=5 * 1e6,
        train_freq=4,
        print_freq=10,
        batch_size=32,
        learning_starts=50000,
        target_network_update_freq=10000,
        gamma=0.99,
        prioritized_replay=bool(args.prioritized),
        model_directory=model_directory
    )
    act.save(str(model_directory / "act_model.pkl"))
    env.close()
def test_piecewise_schedule():
    ps = PiecewiseSchedule([(-5, 100), (5, 200), (10, 50), (100, 50), (200, -50)], outside_value=500)

    assert np.isclose(ps.value(-10), 500)
    assert np.isclose(ps.value(0), 150)
    assert np.isclose(ps.value(5), 200)
    assert np.isclose(ps.value(9), 80)
    assert np.isclose(ps.value(50), 50)
    assert np.isclose(ps.value(80), 50)
    assert np.isclose(ps.value(150), 0)
    assert np.isclose(ps.value(175), -25)
    assert np.isclose(ps.value(201), 500)
    assert np.isclose(ps.value(500), 500)

    assert np.isclose(ps.value(200 - 1e-10), -50)
Exemple #8
0
def main():
    exp_dir = './runs/breakout'

    # by default CSV logs will be created in OS temp directory
    logger.configure(dir=exp_dir,
                     format_strs=['stdout', 'log', 'csv', 'tensorboard'],
                     log_suffix=None)

    # create Atari environment, use no-op reset, max pool last two frames
    env = make_atari('BreakoutNoFrameskip-v4')

    # by default monitor will log episod reward and log
    env = bench.Monitor(env, logger.get_dir())
    env = deepq.wrap_atari_dqn(env)

    learn_params = defaults.atari_breakout()
    learn_params['checkpoint_path'] = exp_dir
    learn_params['checkpoint_freq'] = 100000
    learn_params['print_freq'] = 10
    learn_params['exploration_scheduler'] = PiecewiseSchedule([ \
                (0,        1.0),
                (int(1e6), 0.1),
                (int(1e7), 0.01)
            ], outside_value=0.01)

    model = deepq.learn(
        env,

        # below are defaults
        #convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
        #hiddens=[256],
        total_timesteps=int(3e7),
        **learn_params)

    model.save('breakout_model.pkl')
    env.close()
Exemple #9
0
class Worker(object):
    def __init__(self, is_chief, env, model, config, should_render=True):
        self.config = config
        self.is_chief = is_chief
        self.env = env
        self.should_render = should_render
        self.act, self.train, self.update_target, self.debug = multi_deepq.build_train(
                make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
                q_func=model,
                num_actions=env.action_space.n,
                gamma=config.gamma,
                optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate),
                reuse=(not is_chief),
                )

        self.max_iteraction_count = int(self.config.num_iterations)

        # Create the replay buffer
        self.replay_buffer = ReplayBuffer(config.replay_size)
        if self.config.exploration_schedule == "constant":
            self.exploration = ConstantSchedule(0.1)
        elif self.config.exploration_schedule == "linear":
            # Create the schedule for exploration starting from 1 (every action is random) down to
            # 0.02 (98% of actions are selected according to values predicted by the model).
            self.exploration = LinearSchedule(
                    schedule_timesteps=self.config.num_iterations / 4, initial_p=1.0, final_p=0.02)
        elif self.config.exploration_schedule == "piecewise":
            approximate_num_iters = self.config.num_iterations
            self.exploration = PiecewiseSchedule([
                (0, 1.0),
                (approximate_num_iters / 50, 0.1),
                (approximate_num_iters / 5, 0.01)
            ], outside_value=0.01)
        else:
            raise ValueError("Bad exploration schedule")

    def run(self, session, coord):
        episode_rewards = [0.0]
        td_errors = [0.0]
        obs = self.env.reset()

        start_time = timer()
        event_timer = EventTimer()
        for t in range(self.max_iteraction_count):
            if t > 1000 and t % 500 == 0:
                event_timer.start()
            # Take action and update exploration to the newest value
            action = self.act(np.array(obs)[None], update_eps=self.exploration.value(t), session=session)[0]
            event_timer.measure('act')
            new_obs, rew, done, _ = self.env.step(action)
            event_timer.measure('step')
            # Store transition in the replay buffer.
            self.replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = self.env.reset()
                episode_rewards.append(0)

            event_timer.measure('replay_buffer')

            # show_episode = len(episode_rewards) > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            show_episode = len(episode_rewards) % 100 == 0
            if self.should_render and self.is_chief and show_episode:
                # Show off the result
                self.env.render()

            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if t > 1000 and t % self.config.train_frequency == 0:
                obses_t, actions, rewards, obses_tp1, dones = self.replay_buffer.sample(self.config.batch_size)
                td_error = self.train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards),
                        session=session)
                td_errors.append(np.mean(td_error))
                # if (t / self.config.train_frequency) % 10 == 0:
                    # print("mean TD error: {}".format(np.mean(td_error)))
                    # print("Gradient norm: {}".format(grad_norm))
                event_timer.measure('train')

            # Update target network periodically.
            if self.is_chief and t % self.config.target_update_frequency == 0:
                self.update_target(session=session)
                event_timer.measure('update_target')

            event_timer.stop()

            if self.is_chief and done and len(episode_rewards) % 10 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("mean episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                logger.record_tabular("mean td_error", round(np.mean(td_errors[-101:]), 5))
                logger.record_tabular("time elapsed", timer() - start_time)
                logger.record_tabular("steps/s", t / (timer() - start_time))
                logger.record_tabular("% time spent exploring", int(100 * self.exploration.value(t)))
                event_timer.print_shares()
                event_timer.print_averages()
                logger.dump_tabular()
Exemple #10
0
class Actor(object):
    def __init__(self, index, is_chief, env, model, queue, config, logger, episode_logger, should_render=False):
        self.config = config
        self.is_chief = is_chief
        self.env = env
        self.global_step = tf.train.get_global_step()
        self.should_render = should_render
        self.logger = logger
        self.episode_logger = episode_logger

        self.log_frequency = 10

        with tf.device('/cpu:0'):
            self.act, self.update_params, self.debug = qdqn.build_act(
                    make_obs_ph=lambda name: U.Uint8Input(self.env.observation_space.shape, name=name),
                    q_func=model,
                    num_actions=self.env.action_space.n,
                    scope="actor_{}".format(index),
                    learner_scope="learner",
                    reuse=False)

        with tf.device('/cpu:0'):
            obs_t_input = tf.placeholder(tf.uint8, self.env.observation_space.shape, name="obs_t")
            act_t_ph = tf.placeholder(tf.int32, self.env.action_space.shape, name="action")
            rew_t_ph = tf.placeholder(tf.float32, [], name="reward")
            obs_tp1_input = tf.placeholder(tf.uint8, self.env.observation_space.shape, name="obs_tp1")
            done_mask_ph = tf.placeholder(tf.float32, [], name="done")
            global_step_ph = tf.placeholder(tf.int32, [], name="sample_global_step")
            enqueue_op = queue.enqueue(
                    [obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, global_step_ph])
            self.enqueue = U.function(
                    [obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, global_step_ph], enqueue_op)

        self.max_iteration_count = self.config.num_iterations

        if self.config.exploration_schedule == "constant":
            self.exploration = ConstantSchedule(0.1)
        elif self.config.exploration_schedule == "linear":
            # Create the schedule for exploration starting from 1 (every action is random) down to
            # 0.02 (98% of actions are selected according to values predicted by the model).
            self.exploration = LinearSchedule(
                    schedule_timesteps=self.config.num_iterations / 4, initial_p=1.0, final_p=0.02)
        elif self.config.exploration_schedule == "piecewise":
            approximate_num_iters = self.config.num_iterations
            self.exploration = PiecewiseSchedule([
                (0, 1.0),
                (approximate_num_iters / 50, 0.1),
                (approximate_num_iters / 5, 0.01)
            ], outside_value=0.01)
        else:
            raise ValueError("Bad exploration schedule")


    def run(self, session, coord):
        episode_rewards = [0.0]
        episode_length = 0
        obs = self.env.reset()
        done = False

        global_step = session.run(self.global_step)
        exploration_value = self.exploration.value(global_step)
        print("Starting acting from step {}".format(global_step))

        start_time = timer()
        event_timer = EventTimer()
        for t in itertools.count():
            if coord.should_stop():
                break

            if t % 10 == 0:
                global_step = session.run(self.global_step)
                exploration_value = self.exploration.value(global_step)

            if t > 0 and t % 500 == 0:
                event_timer.start()
            # Take action and update exploration to the newest value
            action = self.act(np.array(obs)[None], update_eps=exploration_value, session=session)[0]
            if done and len(episode_rewards) % self.log_frequency == 0:
                print(self.debug["q_values"](np.array(obs)[None], session=session))

            event_timer.measure('act')
            new_obs, rew, done, _ = self.env.step(action)
            event_timer.measure('step')
            self.enqueue(obs, action, rew, new_obs, float(done), global_step, session=session)
            obs = new_obs

            episode_length += 1
            episode_rewards[-1] += rew
            if done:
                self.episode_logger.record_tabular("step", t)
                self.episode_logger.record_tabular("global_step", global_step)
                self.episode_logger.record_tabular("reward", episode_rewards[-1])
                self.episode_logger.record_tabular("length", episode_length)
                self.episode_logger.record_tabular("end_time", timer() - start_time)
                self.episode_logger.dump_tabular()

                obs = self.env.reset()
                episode_rewards.append(0)
                episode_length = 0

            event_timer.measure('queue')

            # show_episode = len(episode_rewards) > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            show_episode = len(episode_rewards) % 10 == 0
            if self.should_render and self.is_chief and show_episode:
                # Show off the result
                self.env.render()

            # Update target network periodically.
            if t % self.config.params_update_frequency == 0:
                self.update_params(session=session)
                event_timer.measure('update_params')

            event_timer.stop()

            if self.is_chief and done and len(episode_rewards) % self.log_frequency == 0:
                self.logger.record_tabular("step", t)
                self.logger.record_tabular("global_step", global_step)
                self.logger.record_tabular("episodes", len(episode_rewards))
                self.logger.record_tabular("mean episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                self.logger.record_tabular("time elapsed", timer() - start_time)
                self.logger.record_tabular("steps/s", t / (timer() - start_time))
                self.logger.record_tabular("% time spent exploring", int(100 * exploration_value))
                event_timer.print_shares(self.logger)
                event_timer.print_averages(self.logger)
                self.logger.dump_tabular()
Exemple #11
0
            make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
            v_func=v_func_model,
            adv_func=binary_model_1,
            learning_rate=args.lr,
            num_actions=env.action_space.n,
            en=args.en,

            gamma=0.99,
            grad_norm_clipping=10,
        )
        predict_values = debug['predict_values']
        
        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([
            (0, 1.0),
            (approximate_num_iters / 50, 0.1),
            (approximate_num_iters / 5, 0.01)
        ], outside_value=0.01)

        replay_buffer = ReplayBuffer(args.replay_buffer_size)
        
        U.initialize()
        
        update_target()
        num_iters = 0
        done_times = 0
                
        if not os.path.exists('./svgd_adv_learning/' + env_name):
            os.makedirs('./svgd_adv_learning/' + env_name)

        obs = env.reset()
        else:
            act, train, update_target, debug = deepq.build_train(
                make_obs_ph=lambda name: U.Uint8Input(
                    env.observation_space.shape, name=name),
                q_func=model,
                num_actions=env.action_space.n,
                optimizer=tf.train.AdamOptimizer(learning_rate=args.lr),
                gamma=0.99,
                double_q=args.double_q,
                noisy=args.noisy)

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule(
            [
                (0, 1.0),
                (int(args.num_steps * 0.1), 0.1
                 )  # (approximate_num_iters / 5, 0.01)
            ],
            outside_value=0.1)

        learning_rate = PiecewiseSchedule([(0, 1e-3), (1, 1e-3)],
                                          outside_value=1e-3)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)
Exemple #13
0
def main():
    with tf_util.make_session(4) as session:
        act_fn, train_fn, target_update_fn, debug_fn = deepq.build_train(
            make_obs_ph=lambda name: Uint8Input([input_height, input_width], name=name),
            q_func=q_function_nn,
            num_actions=action_space_size,
            optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=False)

        epsilon = PiecewiseSchedule([(0, 1.0),
                                     (10000, 1.0), # since we start training at 10000 steps
                                     (20000, 0.4),
                                     (50000, 0.2),
                                     (100000, 0.1),
                                     (500000, 0.05)], outside_value=0.01)
        replay_memory = PrioritizedReplayBuffer(replay_memory_size, replay_alpha)
        beta = LinearSchedule(int(NUM_STEPS/4), initial_p=replay_beta, final_p=1.0)
        tf_util.initialize()
        target_update_fn()

        state = env.reset()
        state = preprocess_frame(state)
        watch_train = False
        dq = [] # a queue to store episode rewards
        start_step = 1
        episode = 1
        if is_load_model:
            dict_state = load_model()
            replay_memory = dict_state["replay_memory"]
            dq = dict_state["dq"]
            start_step = dict_state["step"] + 1

        for step in itertools.count(start=start_step):
            action = act_fn(state[np.newaxis], update_eps=epsilon.value(step))[0]
            state_tplus1, reward, is_finished, _ = env.step(action)
            dq.append(reward)
            if watch_flag:
                env.render()
                time.sleep(1.0/fps)
            state_tplus1 = preprocess_frame(state_tplus1)
            replay_memory.add(state, action, reward, state_tplus1, float(is_finished))
            state = state_tplus1
            if is_finished:
                ep_reward = sum(dq)
                log.logkv("Steps", step)
                log.logkv("Episode reward", ep_reward)
                log.logkv("Episode number", episode)
                log.dumpkvs()
                print("Step", step, ". Finished episode", episode, "with reward ", ep_reward)
                dq = []
                state = preprocess_frame(env.reset())
                episode += 1
                for _ in range(30):
                    # NOOP for ~90 frames to skip the start screen. Range 30 used because each
                    # step executed for 3 frames on average. Action 0 stands for doing nothing
                    env.step(0)
                    if watch_flag:
                        env.render()

            if step > 10000 and step % learn_freq == 0:
                # only start training after 10000 steps are completed
                batch = replay_memory.sample(batch_size, beta=beta.value(step))
                states = batch[0]
                actions = batch[1]
                rewards = batch[2]
                states_tplus1 = batch[3]
                finished_vars = batch[4]
                weights = batch[5]
                state_indeces = batch[6]
                errors = train_fn(states, actions, rewards, states_tplus1, finished_vars, weights)
                priority_order_new = np.abs(errors) + replay_epsilon
                replay_memory.update_priorities(state_indeces, priority_order_new)

            if step % save_freq == 0:
                print("State save", step)
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)

            if step > NUM_STEPS:
                print("Finished training. Saving model to ./saved_model/model.ckpt")
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)
                break
Exemple #14
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          action_replay=True,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = rdqn.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    elif action_replay:
        replay_buffer = ActionreplayBuffer(buffer_size, env.action_space.n)
        beta_schedule = None
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = PiecewiseSchedule([(0, 1.0), (int(1e6), 0.1),
                                     (int(1e7), 0.01)],
                                    outside_value=0.01)
    '''exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)'''

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True
                if t > learning_starts and action_replay:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size, action)
                    if len(obses_t) != 0:
                        weights, batch_idxes = np.ones_like(rewards), None
                        td_errors = train(obses_t, actions, rewards, obses_tp1,
                                          dones, weights)
                        logger.record_tabular("reinforce terminate action :",
                                              action)

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Exemple #15
0
# value_summary.value.add(tag='episode')

qec_summary.value.add(tag='qec_mean')
qec_summary.value.add(tag='qec_fount')
value_summary.value.add(tag='steps')
value_summary.value.add(tag='episodes')

with U.make_session(4) as sess:
    # EMDQN

    exploration = PiecewiseSchedule(
        [
            (0, 1.0),
            (args.end_training, 1.0),
            # (args.end_training+1, 1.0),
            # (args.end_training+1, 0.005),
            (args.end_training + 100000, 0.005),
            # (approximate_num_iters / 5, 0.1),
            # (approximate_num_iters / 3, 0.01)
        ],
        outside_value=0.005)
    replay_buffer = ReplayBufferContra(args.replay_buffer_size)
    ec_buffer = []
    buffer_size = int(100000)

    # input_dim = 1024
    for i in range(env.action_space.n):
        ec_buffer.append(
            LRU_KNN_TEST(buffer_size,
                         args.latent_dim,
                         'game',
Exemple #16
0
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr, epsilon=1e-4),
            # optimizer=tf.train.AdamOptimizer(learning_rate=args.lr, epsilon=1e-4),
            gamma=0.99,
            grad_norm_clipping=10,
            input_dim=input_dim,
            batch_size=args.batch_size,
            K=args.negative_samples,
            predict=args.predict
        )

        tf_writer.add_graph(sess.graph)

        approximate_num_iters = args.num_steps
        exploration = PiecewiseSchedule([
            (0, 1.0),
            (400000, 0.05),
            (800000, 0.01)
        ], outside_value=0.01)

        # if args.prioritized:
        #     replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha)
        #     beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0)
        # else:
        #     replay_buffer = ReplayBufferHash(args.replay_buffer_size)

        U.initialize()
        # update_encoder([0])
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
def learn(
        env,
        p_dist_func,
        lr=5e-4,
        eps=0.0003125,
        max_timesteps=100000,
        buffer_size=50000,
        exp_t1=1e6,
        exp_p1=0.1,
        exp_t2=25e6,
        exp_p2=0.01,
        # exploration_fraction=0.1,
        # exploration_final_eps=0.02,
        train_freq=1,
        batch_size=32,
        print_freq=1,
        checkpoint_freq=10000,
        learning_starts=1000,
        gamma=0.95,
        target_network_update_freq=500,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,
        prioritized_replay_eps=1e-6,
        num_cpu=16,
        param_noise=False,
        callback=None,
        dist_params=None,
        n_action=None,
        action_map=None):
    """Train a distdeepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    p_dist_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/distdeepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = make_session(num_cpu=num_cpu)
    sess.__enter__()

    # logger.configure()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    if dist_params is None:
        raise ValueError('dist_params is required')

    # z, dz = build_z(**dist_params)

    act, train, update_target, debug = distdeepq.build_train(
        make_obs_ph=make_obs_ph,
        p_dist_func=p_dist_func,
        # num_actions=env.action_space.n,
        n_action=n_action,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr, epsilon=eps),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        dist_params=dist_params)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'p_dist_func': p_dist_func,
        'num_actions': n_action,
        'dist_params': dist_params
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    #exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
    #                             initial_p=1.0,
    #                             final_p=exploration_final_eps)
    # exploration = PiecewiseSchedule([(0, 1.0),(max_timesteps/25, 0.1),
    #                                   (max_timesteps, 0.01)], outside_value=0.01)
    exploration = PiecewiseSchedule([(0, 1.0), (exp_t1, exp_p1),
                                     (exp_t2, exp_p2)],
                                    outside_value=exp_p2)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            reset = False

            action_val = action_map[action]
            new_obs, rew, done, _ = env.step(action_val)
            # env.render()
            # rew = rew-1 for proposed loss with new metric
            # rew = rew-1
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                errors = train(obses_t, actions, rewards, obses_tp1, dones,
                               weights)

                if prioritized_replay:
                    new_priorities = np.abs(errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                # debug['pi'] = tf.Print(debug['pi'], [debug['pi'], "target pi"])
                # tf.Print(debug['mu'], [debug['mu'], "target mu"])
                # tf.Print(debug['sigma'], [debug['sigma'], "target sigma"])
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
Exemple #18
0
            return actual_model(img_in, num_actions, scope, layer_norm=args.layer_norm, **kwargs)
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
            q_func=model_wrapper,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr, epsilon=1e-4),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=args.double_q,
            param_noise=args.param_noise
        )

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([
            (0, 1.0),
            (approximate_num_iters / 50, 0.1),
            (approximate_num_iters / 5, 0.01)
        ], outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          test_agent=1e6,
          param_noise=False,
          double=True,
          lambda_double=False,
          lam=0.2,
          targets=1,
          piecewise_schedule=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq_base.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=double,
        lambda_double=lambda_double,
        lam=lam,
        targets=targets,
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    if piecewise_schedule:
        exploration = PiecewiseSchedule(endpoints=[(0,1.0),(1e6,exploration_final_eps),(24e6,0.01)], outside_value=0.01)
    else:
        exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * 
                                      max_timesteps),
                                      initial_p=1.0,
                                      final_p=exploration_final_eps)
    # Initialize the parameters and copy them to the target network.
    U.initialize()
    targets_seq = np.array([i for i in range(targets)],dtype=np.int32)
    targets_lam = lam ** targets_seq
    for target in range(targets):
        update_target[target]()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    epinfobuf = deque(maxlen=100)
    test_flag = False


    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, info = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs
            maybeepinfo = info.get('episode')
            if maybeepinfo:
                epinfobuf.extend([maybeepinfo])
            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights, targets_lam)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                targets_seq = np.roll(targets_seq, 1)
                targets_lam = np.roll(targets_lam, -1)

                update_target[targets_seq[0]]()

            if t > learning_starts and t % test_agent == 0:
                test_flag = True

            if done and test_flag:

                nEpisodes = 50
                rewards = deque(maxlen=nEpisodes)
                for i in range(nEpisodes):
                    obs, done = env.reset(), False
                    episode_rew = 0
                    reward = 0
                    maybeepinfo = None
                    while maybeepinfo is None:
                        obs, rew, done, info = env.step(act(obs[None], stochastic=True, update_eps=0.001)[0])
                        maybeepinfo = info.get('episode')
                        if maybeepinfo:
                            reward = maybeepinfo['r']
                            rewards.extend([reward])
                        # time.sleep(0.01)
                    # print("Episode:", reward)
                logger.record_tabular("test_reward_mean", np.mean([rew for rew in rewards]))
                logger.record_tabular("steps", t)
                logger.dump_tabular()
                obs = env.reset()
                test_flag = False


            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                mean_reward = safemean([epinfo['r'] for epinfo in epinfobuf])

                logger.record_tabular("episode_reward_mean", mean_reward)
                logger.record_tabular("eplenmean" , safemean([epinfo['l'] for epinfo in epinfobuf]))
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                #logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_reward > saved_mean_reward or ((mean_reward >= saved_mean_reward) and mean_reward > 0):
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_reward
                    act.save()
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act
Exemple #20
0
                if args.dueling else simple_bootstrap_model,
                num_actions=2 * args.mdp_dimension,
                optimizer=tf.train.AdamOptimizer(learning_rate=args.lr,
                                                 epsilon=1e-4),
                gamma=0.99,
                grad_norm_clipping=10,
                double_q=args.double_q,
                heads=1,
                device=args.device)

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule(
            [
                (0, 1.0),
                (args.num_steps / args.epsilon_schedule,
                 0.1),  # (approximate_num_iters / 50, 0.1),
                (args.num_steps / (args.epsilon_schedule * 0.1), 0.01
                 )  # (approximate_num_iters / 5, 0.01)
            ],
            outside_value=0.01)
        learning_rate = PiecewiseSchedule(
            [(0, 1e-4), (args.num_steps / args.learning_schedule, 1e-4),
             (args.num_steps / (args.learning_schedule * 0.5), 5e-5)],
            outside_value=5e-5)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
Exemple #21
0
                        act(np.array(tobs)[None], stochastic=0.05, act_noise=np.random.randn((1, args.latent_dim)))[0]
                    tobs, rew, done, info = tenv.step(action)
                    print(info)
                    if done and len(info["rewards"]) > 0:
                        score = info["rewards"][-1]
                        print("episode #%d: %.2f" % (i + 1, score))
                        scores.append(score)
                        tobs = tenv.reset()
                        break
            avg_score = np.mean(scores)
            print("avgscore: %.2f" % avg_score)
            return avg_score

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0
Exemple #22
0
def make_sample_her_transitions(replay_strategy, replay_k, reward_fun,
                                mi_w_schedule, et_w_schedule,
                                mi_prioritization):

    if (replay_strategy == 'future') or (replay_strategy == 'final'):
        future_p = 1 - (1. / (1 + replay_k))
    else:
        future_p = 0
    mi_w_scheduler = PiecewiseSchedule(endpoints=mi_w_schedule)
    et_w_scheduler = PiecewiseSchedule(endpoints=et_w_schedule)

    def _sample_her_transitions(ddpg, ir, episode_batch,
                                batch_size_in_transitions, mi_r_scale,
                                sk_r_scale, t):
        """episode_batch is {key: array(buffer_size x T x dim_key)}
        """
        T = episode_batch['u'].shape[1]
        rollout_batch_size = episode_batch['u'].shape[0]
        batch_size = batch_size_in_transitions

        # Select which episodes and time steps to use.
        episode_idxs = np.random.randint(0, rollout_batch_size, batch_size)
        t_samples = np.random.randint(T, size=batch_size)

        # calculate intrinsic rewards
        mi_trans = np.zeros([episode_idxs.shape[0], 1])
        sk_trans = np.zeros([episode_idxs.shape[0], 1])
        if ir:
            if mi_prioritization and not (episode_batch['p'].sum() == 0):
                r_traj = rankdata(episode_batch['p'], method='dense')
                r_traj = r_traj - 1
                if not (r_traj.sum() == 0):
                    p_traj = r_traj / r_traj.sum()
                    episode_idxs = np.random.choice(rollout_batch_size,
                                                    size=batch_size,
                                                    replace=True,
                                                    p=p_traj.flatten())

            o_curr = episode_batch['o'][episode_idxs, t_samples].copy()
            o_curr = np.reshape(o_curr, (o_curr.shape[0], 1, o_curr.shape[-1]))
            o_next = episode_batch['o'][episode_idxs, t_samples + 1].copy()
            o_next = np.reshape(o_next, (o_next.shape[0], 1, o_next.shape[-1]))
            o_s = np.concatenate((o_curr, o_next), axis=1)

            if mi_r_scale > 0:
                neg_l = ddpg.run_mi(o_s)
                mi_trans = (-neg_l).copy()

            o = episode_batch['o'][episode_idxs, t_samples].copy()
            z = episode_batch['z'][episode_idxs, t_samples].copy()
            if sk_r_scale > 0:
                sk_r = ddpg.run_sk(o, z)
                sk_trans = sk_r.copy()
        # #

        transitions = {}
        for key in episode_batch.keys():
            if not (key == 'm' or key == 's' or key == 'p'):
                transitions[key] = episode_batch[key][episode_idxs,
                                                      t_samples].copy()
            else:
                transitions[key] = episode_batch[key][episode_idxs].copy()
        transitions['m'] = transitions['m'].flatten().copy()
        transitions['s'] = transitions['s'].flatten().copy()

        her_indexes = np.where(np.random.uniform(size=batch_size) < future_p)
        future_offset = np.random.uniform(size=batch_size) * (T - t_samples)
        future_offset = future_offset.astype(int)
        future_t = (t_samples + 1 + future_offset)[her_indexes]

        if replay_strategy == 'final':
            future_t[:] = T

        future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t]
        transitions['g'][her_indexes] = future_ag

        info = {}
        for key, value in transitions.items():
            if key.startswith('info_'):
                info[key.replace('info_', '')] = value

        reward_params = {k: transitions[k] for k in ['ag_2', 'g']}
        reward_params['info'] = info
        transitions['r'] = reward_fun(**reward_params)

        transitions = {
            k: transitions[k].reshape(batch_size, *transitions[k].shape[1:])
            for k in transitions.keys()
        }

        if ir:
            transitions['m'] = mi_trans.flatten().copy()
            transitions['s'] = sk_trans.flatten().copy()

        transitions['m_w'] = mi_w_scheduler.value(t)
        transitions['s_w'] = 1.0
        transitions['r_w'] = 1.0
        transitions['e_w'] = et_w_scheduler.value(t)

        assert (transitions['u'].shape[0] == batch_size_in_transitions)

        return transitions

    return _sample_her_transitions
Exemple #23
0
                    action = act(np.array(tobs)[None], stochastic=0.05)[0]
                    tobs, rew, done, info = tenv.step(action)
                    print(info)
                    if done and len(info["rewards"]) > 0:
                        score = info["rewards"][-1]
                        print("episode #%d: %.2f" % (i + 1, score))
                        scores.append(score)
                        tobs = tenv.reset()
                        break
            avg_score = np.mean(scores)
            print("avgscore: %.2f" % avg_score)
            return avg_score

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0), (800000, 0.05),
                                         (1600000, 0.01)],
                                        outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size,
                                         frame_history_len=1)

        U.initialize()
        update_target()
        num_iters = 0
Exemple #24
0
def main():
    with tf_util.make_session() as session:
        act_fn, train_fn, target_update_fn, debug_fn = deepq.build_train(
            make_obs_ph=lambda name: Uint8Input([int(input_height), int(input_width)], name=name),
            q_func=q_function_nn,
            num_actions=action_space_size,
            optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=False)

        epsilon = PiecewiseSchedule([(0, 1.0),
                                     (400, 1.0), # since we start training at 10000 steps
                                     (800, 0.4),
                                     (2000, 0.2),
                                     (4000, 0.1),
                                     (20000, 0.05)], outside_value=0.01)
        replay_memory = PrioritizedReplayBuffer(replay_memory_size, replay_alpha)
        beta = LinearSchedule(int(NUM_STEPS/4), initial_p=replay_beta, final_p=1.0)
        tf_util.initialize()
        target_update_fn()

        state = env.reset()
        state = preprocess_frame(state)
        watch_train = False
        dq = [] # a queue to store episode rewards
        start_step = 1
        episode = 1
        if is_load_model:
            dict_state = load_model()
            replay_memory = dict_state["replay_memory"]
            dq = dict_state["dq"]
            start_step = dict_state["step"] + 1

        last_step = 0
        iteration = 1
        win_count = 0
        lose_count = 0
        for step in itertools.count(start=start_step):
            action = act_fn(state[np.newaxis], update_eps=epsilon.value(step))[0]
            # print (str(action) + " ", end=' ')
            # print (action)
            state_tplus1, reward, is_finished = env.act(action, step-last_step)
            dq.append(reward)
            if watch_flag:
                # env.render()
                time.sleep(1.0/fps)
            state_tplus1 = preprocess_frame(state_tplus1)
            if is_finished == "win":
                win_count += 1
                is_finished = True
                r = "win"
            elif is_finished == "lose":
                lose_count += 1
                is_finished = True
                r = "lose"
            else:
                is_finished = False

            replay_memory.add(state, action, reward, state_tplus1, float(is_finished))
            state = state_tplus1
            if is_finished:
                ep_reward = sum(dq)
                log.logkv("Steps", step-last_step)
                log.logkv("Episode reward", ep_reward)
                log.logkv("Episode number", episode)
                log.logkv("Results", r)
                log.dumpkvs()
                # print ()
                print ("Step", step-last_step, "Image", step, ". Finished episode", episode, "with reward ", ep_reward, "Results", r)
                print ("================================")
                os.system("mv new_" + str(step-last_step) + ".png logs/new_" + str(iteration) + ".png")
                iteration += 1
                os.system("rm new_*")
                dq = []
                state = preprocess_frame(env.reset())
                episode += 1
                last_step = step

            # if step > 10000 and step % learn_freq == 0:
            if step > 40 and step % learn_freq == 0:
                batch = replay_memory.sample(batch_size, beta=beta.value(step))
                states = batch[0]
                actions = batch[1]
                rewards = batch[2]
                states_tplus1 = batch[3]
                finished_vars = batch[4]
                weights = batch[5]
                state_indeces = batch[6]
                errors = train_fn(states, actions, rewards, states_tplus1, finished_vars, weights)
                priority_order_new = np.abs(errors) + replay_epsilon
                replay_memory.update_priorities(state_indeces, priority_order_new)

            if step % save_freq == 0:
                print("State save", step)
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)

            if step > NUM_STEPS:
                print("Finished training. Saving model to ./saved_model/model.ckpt")
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)
                break
Exemple #25
0
                    action = act(np.array(tobs)[None], stochastic=0.05)
                    tobs, rew, done, info = tenv.step(action)
                    print(info)
                    if done and len(info["rewards"]) > 0:
                        score = info["rewards"][-1]
                        print("episode #%d: %.2f" % (i + 1, score))
                        scores.append(score)
                        tobs = tenv.reset()
                        break
            avg_score = np.mean(scores)
            print("avgscore: %.2f" % avg_score)
            return avg_score

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 10, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)

        U.initialize()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
        if state is not None:
            num_iters, replay_buffer = state["num_iters"], state[
                "replay_buffer"],
            monitored_env.set_state(state["monitor_state"])

        start_time, start_steps = None, None
        steps_per_iter = RunningAvg(0.999)
        iteration_time_est = RunningAvg(0.999)
Exemple #26
0
                noisy=args.noisy
            )
        else:
            act, train, update_target, debug = deepq.build_train(
                make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
                q_func=model,
                num_actions=env.action_space.n,
                optimizer=tf.train.AdamOptimizer(learning_rate=args.lr),
                gamma=0.99,
                double_q=args.double_q,
                noisy=args.noisy
            )

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([
            (0, 1.0),
            (int(args.num_steps *0.1), 0.1) # (approximate_num_iters / 5, 0.01)
        ], outside_value=0.1)

        learning_rate = PiecewiseSchedule([
            (0, 1e-3),
            (1, 1e-3)
        ], outside_value=1e-3)
        
        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
Exemple #27
0
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: Uint8Input(env.observation_space.shape,
                                                name=name),
            q_func=model_wrapper,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr,
                                             epsilon=1e-4),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=args.double_q,
            param_noise=args.param_noise)

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
                                           initial_p=args.prioritized_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(args.replay_buffer_size)

        U.initialize()
        update_target()
        num_iters = 0
Exemple #28
0
            act, train, update_target, debug = deepq.build_train(
                make_obs_ph=lambda name: U.Uint8Input(
                    env.observation_space.shape, name=name),
                q_func=dueling_model if args.dueling else model,
                num_actions=env.action_space.n,
                optimizer=tf.train.AdamOptimizer(learning_rate=args.lr,
                                                 epsilon=1e-4),
                gamma=0.99,
                grad_norm_clipping=10,
                double_q=args.double_q)

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule(
            [
                (0, 1.0),
                (1e6 / 4, 0.1),  # (approximate_num_iters / 50, 0.1),
                # (5e6 / 4, 0.01) # (approximate_num_iters / 5, 0.01)
            ],
            outside_value=0.01)
        learning_rate = PiecewiseSchedule(
            [
                (0, 1e-4),
                (1e6 / 4, 1e-4),  # (approximate_num_iters / 50, 0.1),
                (5e6 / 4, 5e-5)  # (approximate_num_iters / 5, 0.01)
            ],
            outside_value=5e-5)

        if args.prioritized:
            replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size,
                                                    args.prioritized_alpha)
            beta_schedule = LinearSchedule(approximate_num_iters,
Exemple #29
0
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr,
                                             epsilon=1e-4),
            gamma=args.gamma,
            grad_norm_clipping=10,
        )

        approximate_num_iters = args.num_steps

        exploration = PiecewiseSchedule(
            [
                (0, 1),
                (args.end_training, 1.0),
                # (args.end_training+1, 1.0),
                # (args.end_training+1, 0.005),
                (args.end_training + 10000, 1.0),
                (args.end_training + 200000, 0.05),
                (args.end_training + 400000, 0.01),
                # (approximate_num_iters / 5, 0.1),
                # (approximate_num_iters / 3, 0.01)
            ],
            outside_value=0.01)

        replay_buffer = ReplayBufferHash(args.replay_buffer_size)

        U.initialize()
        num_iters = 0
        num_episodes = 0
        non_discount_return = [0.0]
        discount_return = [0.0]
        # Load the model
Exemple #30
0
                        act(np.array(tobs)[None], stochastic=0.05, act_noise=np.random.randn(1, args.latent_dim))[0]
                    tobs, rew, done, info = tenv.step(action)
                    print(info)
                    if done and len(info["rewards"]) > 0:
                        score = info["rewards"][-1]
                        print("episode #%d: %.2f" % (i + 1, score))
                        scores.append(score)
                        tobs = tenv.reset()
                        break
            avg_score = np.mean(scores)
            print("avgscore: %.2f" % avg_score)
            return avg_score

        approximate_num_iters = args.num_steps / 4
        exploration = PiecewiseSchedule([(0, 1.0), (args.begin_training, 1.0),
                                         (approximate_num_iters / 10, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)

        U.initialize()
        num_iters = 0

        # Load the model
        state = maybe_load_model(savedir, container)
        if state is not None:
            num_iters, replay_buffer = state["num_iters"], state[
                "replay_buffer"],
            monitored_env.set_state(state["monitor_state"])

        start_time, start_steps = None, None
        steps_per_iter = RunningAvg(0.999)
        iteration_time_est = RunningAvg(0.999)