def save_act(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)
def train_policy(arglist): with U.single_threaded_session(): # Create the environment if arglist.use_dense_rewards: print("Will use env MineRLNavigateDense-v0") env = gym.make("MineRLNavigateDense-v0") env_name = "MineRLNavigateDense-v0" else: print("Will use env MineRLNavigate-v0") env = gym.make('MineRLNavigate-v0') env_name = "MineRLNavigate-v0" if arglist.force_forward: env = MineCraftWrapperSimplified(env) else: env = MineCraftWrapper(env) if not arglist.use_demonstrations: # Use stack of last 4 frames as obs env = FrameStack(env, 4) # Create all the functions necessary to train the model act, train, update_target, debug = deepq.build_train( make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name), q_func=build_q_func('conv_only', dueling=True), num_actions=env.action_space.n, gamma=0.9, optimizer=tf.train.AdamOptimizer(learning_rate=5e-4), ) # Create the replay buffer(s) (TODO: Use prioritized replay buffer) if arglist.use_demonstrations: replay_buffer = ReplayBuffer(int(arglist.replay_buffer_len / 2)) demo_buffer = load_demo_buffer(env_name, int(arglist.replay_buffer_len / 2)) else: replay_buffer = ReplayBuffer(arglist.replay_buffer_len) # Create the schedule for exploration starting from 1 (every action is random) down to # 0.02 (98% of actions are selected according to values predicted by the model). exploration = LinearSchedule( schedule_timesteps=arglist.num_exploration_steps * arglist.num_episodes * arglist.max_episode_steps, initial_p=1.0, final_p=arglist.final_epsilon) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] n_episodes = 0 n_steps = 0 obs = env.reset() log_path = "./learning_curves/minerl_" + str(date.today()) + "_" + str( time.time()) + ".dat" log_file = open(log_path, "a") for episode in range(arglist.num_episodes): print("Episode: ", str(episode)) done = False episode_steps = 0 while not done: # Take action and update exploration to the newest value action = act(obs[None], update_eps=exploration.value(n_steps))[0] new_obs, rew, done, _ = env.step(action) n_steps += 1 episode_steps += 1 # Break episode if episode_steps > arglist.max_episode_steps: done = True # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs # Store rewards episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0) n_episodes += 1 # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if (n_steps > arglist.learning_starts_at_steps) and (n_steps % 4 == 0): obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( 32) train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards)) if arglist.use_demonstrations: if (n_steps < arglist.learning_starts_at_steps) and ( n_steps % 4 == 0): obses_t, actions, rewards, obses_tp1, dones = demo_buffer.sample( 32) train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards)) if (n_steps > arglist.learning_starts_at_steps) and ( n_steps % 4 == 0): obses_t, actions, rewards, obses_tp1, dones = demo_buffer.sample( 32) train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards)) # Update target network periodically. if n_steps % arglist.target_net_update_freq == 0: update_target() # Log data for analysis if done and len(episode_rewards) % 10 == 0: logger.record_tabular("steps", n_steps) logger.record_tabular("episodes", len(episode_rewards)) logger.record_tabular( "mean episode reward", round(np.mean(episode_rewards[-101:-1]), 1)) logger.record_tabular( "% time spent exploring", int(100 * exploration.value(n_steps))) logger.dump_tabular() #TODO: Save checkpoints if n_steps % arglist.checkpoint_rate == 0: checkpoint_path = "./checkpoints/minerl_" + str( episode) + "_" + str(date.today()) + "_" + str( time.time()) + ".pkl" save_variables(checkpoint_path) print("%s,%s,%s,%s" % (n_steps, episode, round(np.mean(episode_rewards[-101:-1]), 1), int(100 * exploration.value(n_steps))), file=log_file) log_file.close()
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=100000, exploration_fraction=0.1, exploration_final_eps=0.1, train_freq=1, batch_size=64, print_freq=1, eval_freq=2500, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, csv_path="results.csv", method_type="baseline", **network_kwargs): """Train a deepr model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepr.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepr/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) #q_func = build_q_func(network, **network_kwargs) q_func = build_q_func(mlp(num_layers=4, num_hidden=64), **network_kwargs) #q_func = build_q_func(mlp(num_layers=2, num_hidden=64, activation=tf.nn.relu), **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule( schedule_timesteps=int(exploration_fraction * total_timesteps), #initial_p=1.0, initial_p=exploration_final_eps, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() eval_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) csvfile = open(csv_path, 'w', newline='') fieldnames = ['STEPS', 'REWARD'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for t in range(total_timesteps + 1): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: #update_eps = exploration.value(t) update_eps = exploration_final_eps update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action_mask = get_mask(env, method_type) a = act(np.array(obs)[None], unused_actions_neginf_mask=action_mask, update_eps=update_eps, **kwargs)[0] env_action = a reset = False new_obs, rew, done, _ = env.step(env_action) eval_rewards[-1] += rew action_mask_p = get_mask(env, method_type) # Shaping if method_type == 'shaping': ## look-ahead shaping ap = act(np.array(new_obs)[None], unused_actions_neginf_mask=action_mask_p, stochastic=False)[0] f = action_mask_p[ap] - action_mask[a] rew = rew + f # Store transition in the replay buffer. #replay_buffer.add(obs, a, rew, new_obs, float(done), action_mask_p) if method_type != 'shaping': replay_buffer.add(obs, a, rew, new_obs, float(done), np.zeros(env.action_space.n)) else: replay_buffer.add(obs, a, rew, new_obs, float(done), action_mask_p) obs = new_obs if t % eval_freq == 0: eval_rewards.append(0.0) if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones, masks_tp1 = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights, masks_tp1) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_eval_reward = round(np.mean(eval_rewards[-1 - print_freq:-1]), 1) num_evals = len(eval_rewards) if t > 0 and t % eval_freq == 0 and print_freq is not None and t % ( print_freq * eval_freq) == 0: #if done and print_freq is not None and len(eval_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("evals", num_evals) logger.record_tabular("average reward in this eval", mean_eval_reward / (eval_freq)) logger.record_tabular("total reward in this eval", mean_eval_reward) logger.dump_tabular() writer.writerow({ "STEPS": t, "REWARD": mean_eval_reward / (eval_freq) }) csvfile.flush() if (checkpoint_freq is not None and t > learning_starts and num_evals > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_eval_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_eval_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_eval_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
def save(self, save_path): tf_util.save_variables(save_path)
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=5, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the trained model from. (default: None)(used in test stage) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) med_libs = MedLibs() '''Define Q network inputs: observation place holder(make_obs_ph), num_actions, scope, reuse outputs(tensor of shape batch_size*num_actions): values of each action, Q(s,a_{i}) ''' q_func = build_q_func(network, **network_kwargs) ''' To put observations into a placeholder ''' # TODO: Can only deal with Discrete and Box observation spaces for now # observation_space = env.observation_space (default) # Use sub_obs_space instead observation_space = med_libs.subobs_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) ''' Customize action ''' # TODO: subset of action space. action_dim = med_libs.sub_act_dim ''' Returns: deepq.build_train() act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. act is computed by [build_act] or [build_act_with_param_noise] train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. update_target: () -> () copy the parameters from optimized Q function to the target Q function. debug: {str: function} a bunch of functions to print debug data like q_values. ''' act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=action_dim, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, double_q=True, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': action_dim, } '''Contruct an act object using ActWrapper''' act = ActWrapper(act, act_params) ''' Create the replay buffer''' if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None '''Create the schedule for exploration starting from 1.''' exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) ''' Initialize all the uninitialized variables in the global scope and copy them to the target network. ''' U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() sub_obs = med_libs.custom_obs(obs) # TODO: customize observations pre_obs = obs reset = True mydict = med_libs.action_dict already_starts = False with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: # load_path: a trained model/policy load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) ''' Training loop starts''' t = 0 while t < total_timesteps: if callback is not None: if callback(locals(), globals()): break kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True ''' Choose action: take action and update exploration to the newest value ''' # TODO: Mixed action strategy # Normal status, action is easily determined by rules, use [obs] action = med_libs.simple_case_action(obs) # Distraction status, action is determined by Q, with [sub_obs] if action == -10: action = act(np.array(sub_obs)[None], update_eps=update_eps, **kwargs)[0] action = med_libs.action_Q_env( action ) # TODO:action_Q_env, from Q_action(0~2) to env_action(2~4) reset = False ''' Step action ''' new_obs, rew, done, d_info = env.step(action) d_att_last = int(pre_obs[0][0]) d_att_now = int(obs[0][0]) d_att_next = int(new_obs[0][0]) ''' Store transition in the replay buffer.''' pre_obs = obs obs = new_obs sub_new_obs = med_libs.custom_obs(new_obs) if (d_att_last == 0 and d_att_now == 1) and not already_starts: already_starts = True if already_starts and d_att_now == 1: replay_buffer.add(sub_obs, action, rew, sub_new_obs, float(done)) episode_rewards[-1] += rew # Sum of rewards t = t + 1 print( '>> Iteration:{}, State[d_att,cd_activate,L4_available,ssl4_activate,f_dc]:{}' .format(t, sub_obs)) print( 'Dis_Last:{}, Dis_Now:{}, Dis_Next:{},Reward+Cost:{}, Action:{}' .format( d_att_last, d_att_now, d_att_next, rew, list(mydict.keys())[list( mydict.values()).index(action)])) # update sub_obs sub_obs = sub_new_obs # Done and Reset if done: print('Done infos: ', d_info) print('======= end =======') obs = env.reset() sub_obs = med_libs.custom_obs(obs) # TODO: custom obs pre_obs = obs # TODO: save obs at t-1 already_starts = False episode_rewards.append(0.0) reset = True # Update the Q network parameters if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None # Calculate td-errors actions = med_libs.action_env_Q( actions ) # TODO:action_env_Q, from env_action(2~4) to Q_action(0~2) td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically, copy weights of Q to target Q update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, lambda_=0.1, margin=0.1, i_before=1, gamma=1.0, target_network_update_freq=500, double_q=False, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = modified_deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), lambda_=lambda_, margin=margin, gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, double_q=double_q ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = ModifiedPrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ModifiedReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] episode_scores = deque(maxlen=100) saved_mean_reward = None obs = env.reset() reset = True trained = False num_steps_per_episode = 0 obses_before = deque(maxlen=i_before) with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log( 1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n) ) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # Store transition in the replay buffer. if len(obses_before) < obses_before.maxlen: obses_before.append(obs) obs_tmi = np.zeros_like(obs) replay_buffer.new_add(obs_tmi, obs, action, rew, new_obs, float(done), float(False)) else: obs_tmi = obses_before.popleft() obses_before.append(obs) replay_buffer.new_add(obs_tmi, obs, action, rew, new_obs, float(done), float(True)) obs = new_obs episode_rewards[-1] += rew num_steps_per_episode += 1 if done: if 'episode' in info: episode_scores.append(info['episode']['r']) obs = env.reset() episode_rewards.append(0.0) reset = True obses_before.clear() if t > learning_starts and t % train_freq == 0: trained = True # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) obses_tmi, obses_t, actions, rewards, obses_tp1, dones, has_obs_tmis, weights, batch_idxes = experience else: obses_tmi, obses_t, actions, rewards, obses_tp1, dones, has_obs_tmis = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors, min_delta_d, max_delta_d, delta_d, representation_loss, weighted_error = train( obses_tmi, obses_t, actions, rewards, obses_tp1, dones, has_obs_tmis, weights ) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) if len(episode_scores) != 0: mean_100ep_scores = sum(episode_scores) / len(episode_scores) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("mean 100 episode scores", mean_100ep_scores) logger.record_tabular("number of steps per episode", num_steps_per_episode) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) if t > learning_starts and trained: # Log extra loss information logger.record_tabular("delta d", delta_d) logger.record_tabular("min delta d", min_delta_d) logger.record_tabular("max delta d", max_delta_d) logger.record_tabular("representation loss", representation_loss) logger.record_tabular("weighted error", weighted_error) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if done: num_steps_per_episode = 0 if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
def learn_neural_linear( env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=10, #100 checkpoint_freq=10000, checkpoint_path=None, learning_starts=999, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, ddqn=False, prior="no prior", actor="dqn", **network_kwargs): #Train a deepq model. # Create all the functions necessary to train the model checkpoint_path = logger.get_dir() sess = get_session() set_global_seeds(seed) blr_params = BLRParams() q_func = deepq.models.cnn_to_mlp( convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], hiddens=[blr_params.feat_dim], dueling=bool(0), ) # q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, feat_dim, feat, feat_target, target, last_layer_weights, blr_ops, blr_helpers = deepq.build_train_neural_linear( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, double_q=ddqn, actor=actor) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) # BLR # preliminearies num_actions = env.action_space.n w_mu = np.zeros((num_actions, feat_dim)) w_sample = np.random.normal(loc=0, scale=0.1, size=(num_actions, feat_dim)) w_target = np.random.normal(loc=0, scale=0.1, size=(num_actions, feat_dim)) w_cov = np.zeros((num_actions, feat_dim, feat_dim)) for a in range(num_actions): w_cov[a] = np.eye(feat_dim) phiphiT = np.zeros((num_actions, feat_dim, feat_dim)) phiY = np.zeros((num_actions, feat_dim)) a0 = 6 b0 = 6 a_sig = [a0 for _ in range(num_actions)] b_sig = [b0 for _ in range(num_actions)] yy = [0 for _ in range(num_actions)] blr_update = 0 for t in tqdm(range(total_timesteps)): if callback is not None: if callback(locals(), globals()): break # if t % 1000 == 0: # print("{}/{}".format(t,total_timesteps)) # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], w_sample[None]) env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # clipping like in BDQN rew = np.sign(rew) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True # sample new w from posterior if t > 0 and t % blr_params.sample_w == 0: for i in range(num_actions): if blr_params.no_prior: w_sample[i] = np.random.multivariate_normal( w_mu[i], w_cov[i]) else: sigma2_s = b_sig[i] * invgamma.rvs(a_sig[i]) w_sample[i] = np.random.multivariate_normal( w_mu[i], sigma2_s * w_cov[i]) if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. # when target network updates we update our posterior belifes # and transfering information from the old target # to our new target blr_update += 1 if blr_update == 10: #10 print("updating posterior parameters") if blr_params.no_prior: phiphiT, phiY, w_mu, w_cov, a_sig, b_sig = BayesRegNoPrior( phiphiT, phiY, w_target, replay_buffer, feat, feat_target, target, num_actions, blr_params, w_mu, w_cov, sess.run(last_layer_weights), prior, blr_ops, blr_helpers) else: phiphiT, phiY, w_mu, w_cov, a_sig, b_sig = BayesRegWithPrior( phiphiT, phiY, w_target, replay_buffer, feat, feat_target, target, num_actions, blr_params, w_mu, w_cov, sess.run(last_layer_weights)) blr_update = 0 print("updateing target, steps {}".format(t)) update_target() w_target = w_mu mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) mean_10ep_reward = round(np.mean(episode_rewards[-11:-1]), 1) num_episodes = len(episode_rewards) # if done and print_freq is not None and len(episode_rewards) % print_freq == 0: if t % 10000 == 0: #1000 logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("mean 10 episode reward", mean_10ep_reward) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
def learn(env, network, seed=None, lr=1e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, multiplayer=False, callback=None, load_path=None, load_path_1=None, load_path_2=None, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # This was all handled in not the most elegant way # Variables have a _1 or _2 appended to them to separate them # and a bunch of if statementss to have the _2 variables not do anything in single-player # when in multiplayer Space Invaders, need to not reward players for other player dying isSpaceInvaders = False if "SpaceInvaders" in str(env): isSpaceInvaders = True # put a limit on the amount of memory used, otherwise TensorFlow will consume nearly everything # this leaves 1 GB free on my computer, others may need to change it # Create all the functions necessary to train the model # Create two separate TensorFlow sessions graph_1 = tf.Graph() sess_1 = tf.Session(graph=graph_1) if multiplayer: graph_2 = tf.Graph() sess_2 = tf.Session(graph=graph_2) else: # set session 2 to None if it's not being used sess_2 = None set_global_seeds(seed) # specify the q functions as separate objects q_func_1 = build_q_func(network, **network_kwargs) if multiplayer: q_func_2 = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) # build everything for the first model # pass in the session and the "_1" suffix act_1, train_1, update_target_1, debug_1 = deepq.build_train( sess=sess_1, make_obs_ph=make_obs_ph, q_func=q_func_1, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, scope="deepq") # a lot of if multiplayer statements duplicating these actions for a second network # pass in session 2 and "_2" instead if multiplayer: act_2, train_2, update_target_2, debug_2 = deepq.build_train( sess=sess_2, make_obs_ph=make_obs_ph, q_func=q_func_2, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, scope="deepq") # separate act_params for each wrapper act_params_1 = { 'make_obs_ph': make_obs_ph, 'q_func': q_func_1, 'num_actions': env.action_space.n, } if multiplayer: act_params_2 = { 'make_obs_ph': make_obs_ph, 'q_func': q_func_2, 'num_actions': env.action_space.n, } # make the act wrappers act_1 = ActWrapper(act_1, act_params_1) if multiplayer: act_2 = ActWrapper(act_2, act_params_2) # I need to return something if it's single-player else: act_2 = None # Create the replay buffer # separate replay buffers are required for each network # this is required for competitive because the replay buffers hold rewards # and player 2 has different rewards than player 1 if prioritized_replay: replay_buffer_1 = PrioritizedReplayBuffer( buffer_size, alpha=prioritized_replay_alpha) if multiplayer: replay_buffer_2 = PrioritizedReplayBuffer( buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer_1 = ReplayBuffer(buffer_size) if multiplayer: replay_buffer_2 = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. # initialize both sessions U.initialize(sess_1) if multiplayer: U.initialize(sess_2) # the session was passed into these functions when they were created # the separate update functions work within the different sessions update_target_1() if multiplayer: update_target_2() # keep track of rewards for both models separately episode_rewards_1 = [0.0] saved_mean_reward_1 = None if multiplayer: episode_rewards_2 = [0.0] saved_mean_reward_2 = None obs = env.reset() reset = True # storing stuff in a temporary directory while it's working with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file_1 = os.path.join(td, "model_1") temp_file_1 = os.path.join(td, "temp_1") model_saved_1 = False if multiplayer: model_file_2 = os.path.join(td, "model_2") temp_file_2 = os.path.join(td, "temp_2") model_saved_2 = False if tf.train.latest_checkpoint(td) is not None: if multiplayer: # load both models if multiplayer is on load_variables(model_file_1, sess_1) logger.log('Loaded model 1 from {}'.format(model_file_1)) model_saved_1 = True load_variables(model_file_2, sess_2) logger.log('Loaded model 2 from {}'.format(model_file_2)) model_saved_2 = True # otherwise just load the first one else: load_variables(model_file_1, sess_1) logger.log('Loaded model from {}'.format(model_file_1)) model_saved_1 = True # I have separate load variables for single-player and multiplayer # this should be None if multiplayer is on elif load_path is not None: load_variables(load_path, sess_1) logger.log('Loaded model from {}'.format(load_path)) # load the separate models in for multiplayer # should load the variables into the appropriate sessions # my format may restrict things to working properly only when a Player 1 model is loaded into session 1, and same for Player 2 # however, in practice, the models won't work properly otherwise elif multiplayer: if load_path_1 is not None: load_variables(load_path_1, sess_1) logger.log('Loaded model 1 from {}'.format(load_path_1)) if load_path_2 is not None: load_variables(load_path_2, sess_2) logger.log('Loaded model 2 from {}'.format(load_path_2)) # actual training starts here for t in range(total_timesteps): # use this for updating purposes actual_t = t + 1 if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True # receive model 1's action based on the model and observation action_1 = act_1(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action_1 = action_1 # do the same for model 2 if in multiplayer if multiplayer: action_2 = act_2(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action_2 = action_2 reset = False # apply actions to the environment if multiplayer: new_obs, rew_1, rew_2, done, _ = env.step( env_action_1, env_action_2) # apply single action if there isn't a second model else: new_obs, rew_1, rew_2, done, _ = env.step(env_action_1) # manual clipping for Space Invaders multiplayer if isSpaceInvaders and multiplayer: # don't reward a player when the other player dies # change the reward to 0 # the only time either player will get rewarded 200 is when the other player dies if rew_1 >= 200: rew_1 = rew_1 - 200.0 if rew_2 >= 200: rew_2 = rew_2 - 200.0 # manually clip the rewards using the sign function rew_1 = np.sign(rew_1) rew_2 = np.sign(rew_2) combo_factor = 0.25 rew_1_combo = rew_1 + combo_factor * rew_2 rew_2_combo = rew_2 + combo_factor * rew_1 rew_1 = rew_1_combo rew_2 = rew_2_combo # Store transition in the replay buffers replay_buffer_1.add(obs, action_1, rew_1, new_obs, float(done)) if multiplayer: # pass reward_2 to the second player # this reward will vary based on the game replay_buffer_2.add(obs, action_2, rew_2, new_obs, float(done)) obs = new_obs # separate rewards for each model episode_rewards_1[-1] += rew_1 if multiplayer: episode_rewards_2[-1] += rew_2 if done: obs = env.reset() episode_rewards_1.append(0.0) if multiplayer: episode_rewards_2.append(0.0) reset = True if actual_t > learning_starts and actual_t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. # sample from the two replay buffers if prioritized_replay: experience_1 = replay_buffer_1.sample( batch_size, beta=beta_schedule.value(t)) (obses_t_1, actions_1, rewards_1, obses_tp1_1, dones_1, weights_1, batch_idxes_1) = experience_1 # keep all the variables with separate names if multiplayer: experience_2 = replay_buffer_2.sample( batch_size, beta=beta_schedule.value(t)) (obses_t_2, actions_2, rewards_2, obses_tp1_2, dones_2, weights_2, batch_idxes_2) = experience_2 # do the same if there's no prioritization else: obses_t_1, actions_1, rewards_1, obses_tp1_1, dones_1 = replay_buffer_1.sample( batch_size) weights_1, batch_idxes_1 = np.ones_like(rewards_1), None if multiplayer: obses_t_2, actions_2, rewards_2, obses_tp1_2, dones_2 = replay_buffer_2.sample( batch_size) weights_2, batch_idxes_2 = np.ones_like( rewards_2), None # actually train the model based on the samples td_errors_1 = train_1(obses_t_1, actions_1, rewards_1, obses_tp1_1, dones_1, weights_1) if multiplayer: td_errors_2 = train_2(obses_t_2, actions_2, rewards_2, obses_tp1_2, dones_2, weights_2) # give new priority weights to the observations if prioritized_replay: new_priorities_1 = np.abs( td_errors_1) + prioritized_replay_eps replay_buffer_1.update_priorities(batch_idxes_1, new_priorities_1) if multiplayer: new_priorities_2 = np.abs( td_errors_2) + prioritized_replay_eps replay_buffer_2.update_priorities( batch_idxes_2, new_priorities_2) if actual_t > learning_starts and actual_t % target_network_update_freq == 0: # Update target networks periodically. update_target_1() if multiplayer: update_target_2() # this section is for the purposes of logging stuff # calculate the average reward over the last 100 episodes mean_100ep_reward_1 = round(np.mean(episode_rewards_1[-101:-1]), 1) if multiplayer: mean_100ep_reward_2 = round( np.mean(episode_rewards_2[-101:-1]), 1) num_episodes = len(episode_rewards_1) # every given number of episodes log and print out the appropriate stuff if done and print_freq is not None and len( episode_rewards_1) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) # print out both rewards if multiplayer if multiplayer: logger.record_tabular("mean 100 episode reward 1", mean_100ep_reward_1) logger.record_tabular("mean 100 episode reward 2", mean_100ep_reward_2) else: logger.record_tabular("mean 100 episode reward", mean_100ep_reward_1) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() # save best-performing version of each model # I've opted out of this for competitive multiplayer because it's difficult to determine what's "best" if (checkpoint_freq is not None and actual_t > learning_starts and num_episodes > 100 and actual_t % checkpoint_freq == 0): # if there's a best reward, save it as the new best model if saved_mean_reward_1 is None or mean_100ep_reward_1 > saved_mean_reward_1: if print_freq is not None: if multiplayer: logger.log( "Saving model 1 due to mean reward increase: {} -> {}" .format(saved_mean_reward_1, mean_100ep_reward_1)) else: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward_1, mean_100ep_reward_1)) save_variables(model_file_1, sess_1) model_saved_1 = True saved_mean_reward_1 = mean_100ep_reward_1 if multiplayer and (saved_mean_reward_2 is None or mean_100ep_reward_2 > saved_mean_reward_2): if print_freq is not None: logger.log( "Saving model 2 due to mean reward increase: {} -> {}" .format(saved_mean_reward_2, mean_100ep_reward_2)) save_variables(model_file_2, sess_2) model_saved_2 = True saved_mean_reward_2 = mean_100ep_reward_2 # restore models at the end to the best performers if model_saved_1: if print_freq is not None: logger.log("Restored model 1 with mean reward: {}".format( saved_mean_reward_1)) load_variables(model_file_1, sess_1) if multiplayer and model_saved_2: if print_freq is not None: logger.log("Restored model 2 with mean reward: {}".format( saved_mean_reward_2)) load_variables(model_file_2, sess_2) return act_1, act_2, sess_1, sess_2
def train(train_params, policy_params, env_id): # Refresh training progress log logger._configure_default_logger() from baselines.ppo1 import mlp_policy, pposgd_simple U.make_session(num_cpu=1).__enter__() def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy( name=name, ob_space=ob_space, ac_space=ac_space, # set tensor hid_size=policy_params.nodes_per_layer, # set nodes num_hid_layers=policy_params.num_layers) # set layers # Set up environment env = gym.make(env_id) env = RewScale(env, 0.1) # Seed Set rank = MPI.COMM_WORLD.Get_rank() workerseed = train_params.seed + 1000000 * rank env.seed(workerseed) print('----------=================--------------') print('rank: ', rank, 'workerseed: ', workerseed) print('----------=================--------------') # Run Training with stochastic gradient descent pi = pposgd_simple.learn(env, policy_fn, max_timesteps=train_params.num_timesteps, timesteps_per_actorbatch=train_params.timesteps_per_actorbatch, clip_param=train_params.clip_param, entcoeff=train_params.entcoeff, optim_epochs=train_params.optim_epochs, optim_stepsize=train_params.optim_stepsize, optim_batchsize=train_params.optim_batchsize, gamma=train_params.gamma, lam=train_params.lam, schedule=train_params.schedule, ) env.close # Save Trained Model an meta data print(train_params.model_path) if train_params.model_path: # Make Dir model_log_dir=os.environ['GYMFC_EXP_MODELSDIR']+train_params.model_name os.makedirs(train_params.model_dir, exist_ok=True) # Merge Metadata meta_data = {**vars(train_params), **vars(policy_params)} # Save Metadata as csv md_file = train_params.model_dir+'/'+'metadata.csv' md_keys = meta_data.keys() try: with open(md_file, 'w') as mdfile: writer = csv.DictWriter(mdfile, fieldnames = md_keys) writer.writeheader() writer.writerow(meta_data) except IOError: print("I/O error") # Save Model U.save_variables(train_params.model_path) # Save Training Progress file log_path = os.environ['OPENAI_LOGDIR']+'progress.csv' # train prog log copyfile(log_path, train_params.model_dir+'/'+'log.csv') # copy log csv else: print('model not named') return pi
def save(self, path, sess): save_variables(path, sess)
def learn(env, network, seed=None, lr=5e-4, total_timesteps=1000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, save_path=None, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ logger = logging.getLogger() coloredlogs.install( level='DEBUG', fmt= '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s' ) logger.setLevel(logging.DEBUG) # DATAVAULT: Set up list of action meanings and two lists to store episode # and total sums for each possible action in the list. action_names = env.unwrapped.get_action_meanings() action_episode_sums = [] action_total_sums = [] for x in range(len(action_names)): action_episode_sums.append(0) action_total_sums.append(0) # And obviously, you need a datavault item dv = DataVault() # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) #DATAVAULT: This is where you usually want to scrape data - in the timestep loop for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True # if environment is pacman, limit moves to four directions name = env.unwrapped.spec.id if name == "MsPacmanNoFrameskip-v4": while True: step_return = act(np.array(obs)[None], update_eps=update_eps, **kwargs) action = step_return[0][0] env_action = action q_values = np.squeeze(step_return[1]) # test for break condition if 1 <= action <= 4: break else: step_return = act(np.array(obs)[None], update_eps=update_eps, **kwargs) action = step_return[0][0] q_values = np.squeeze(step_return[1]) env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # DATAVAULT: after each step, we push the information out to the datavault lives = env.ale.lives() #store_data(self, action, action_name, action_episode_sums, action_total_sums, reward, done, info, lives, q_values, observation, mean_reward): action_episode_sums, action_total_sums = dv.store_data( action, action_names[action], action_episode_sums, action_total_sums, rew, done, info, lives, q_values, new_obs, saved_mean_reward) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() if (len(episode_rewards[-101:-1]) > 0): mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) else: mean_100ep_reward = 0 num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) dv.make_dataframes() print("Save path is: ") print(save_path) # use parent dir to save data, so we can keep the current folder small and portable directory = os.path.abspath(os.path.join(save_path, os.pardir)) csv_path = os.path.join(directory, 'CSVs') os.mkdir(csv_path) dv.df_to_csv(csv_path) return act
def save(self, save_path): U.save_variables(save_path)
def save(self, path): save_variables(path)
def do_agent_exploration(updates_queue: multiprocessing.Queue, q_func_vars_trained_queue: multiprocessing.Queue, network, seed, config, lr, total_timesteps, learning_starts, buffer_size, exploration_fraction, exploration_initial_eps, exploration_final_eps, train_freq, batch_size, print_freq, checkpoint_freq, gamma, target_network_update_freq, prioritized_replay, prioritized_replay_alpha, prioritized_replay_beta0, prioritized_replay_beta_iters, prioritized_replay_eps, experiment_name, load_path, network_kwargs): env = DotaEnvironment() sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, _, _, debug = deepq.build_train( scope='deepq_act', make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=exploration_initial_eps, final_p=exploration_final_eps) U.initialize() reward_shaper = ActionAdviceRewardShaper(config=config) reward_shaper.load() reward_shaper.generate_merged_demo() full_exp_name = '{}-{}'.format(date.today().strftime('%Y%m%d'), experiment_name) experiment_dir = os.path.join('experiments', full_exp_name) os.makedirs(experiment_dir, exist_ok=True) summary_dir = os.path.join(experiment_dir, 'summaries') os.makedirs(summary_dir, exist_ok=True) summary_writer = tf.summary.FileWriter(summary_dir) checkpoint_dir = os.path.join(experiment_dir, 'checkpoints') os.makedirs(checkpoint_dir, exist_ok=True) stats_dir = os.path.join(experiment_dir, 'stats') os.makedirs(stats_dir, exist_ok=True) with tempfile.TemporaryDirectory() as td: td = checkpoint_dir or td os.makedirs(td, exist_ok=True) model_file = os.path.join(td, "best_model") model_saved = False saved_mean_reward = None # if os.path.exists(model_file): # print('Model is loading') # load_variables(model_file) # logger.log('Loaded model from {}'.format(model_file)) # model_saved = True # elif load_path is not None: # load_variables(load_path) # logger.log('Loaded model from {}'.format(load_path)) def synchronize_q_func_vars(): updates_queue.put( UpdateMessage(UPDATE_STATUS_SEND_WEIGHTS, None, None)) q_func_vars_trained = q_func_vars_trained_queue.get() update_q_func_expr = [] for var, var_trained in zip(debug['q_func_vars'], q_func_vars_trained): update_q_func_expr.append(var.assign(var_trained)) update_q_func_expr = tf.group(*update_q_func_expr) sess.run(update_q_func_expr) synchronize_q_func_vars() episode_rewards = [] act_step_t = 0 while act_step_t < total_timesteps: # Reset the environment obs = env.reset() obs = StatePreprocessor.process(obs) episode_rewards.append(0.0) done = False # Demo preservation variables demo_picked = 0 demo_picked_step = 0 # Demo switching statistics demo_switching_stats = [(0, 0)] # Sample the episode until it is completed act_started_step_t = act_step_t while not done: # Take action and update exploration to the newest value biases, demo_indexes = reward_shaper.get_action_potentials_with_indexes( obs, act_step_t) update_eps = exploration.value(act_step_t) actions, is_randoms = act(np.array(obs)[None], biases, update_eps=update_eps) action, is_random = actions[0], is_randoms[0] if not is_random: bias_demo = demo_indexes[action] if bias_demo != demo_switching_stats[-1][1]: demo_switching_stats.append( (act_step_t - act_started_step_t, bias_demo)) if bias_demo != 0 and demo_picked == 0: demo_picked = bias_demo demo_picked_step = act_step_t + 1 pairs = env.step(action) action, (new_obs, rew, done, _) = pairs[-1] logger.log( f'{act_step_t}/{total_timesteps} obs {obs} action {action}' ) # Compute state on the real reward but learn from the normalized version episode_rewards[-1] += rew rew = np.sign(rew) * np.log(1 + np.abs(rew)) new_obs = StatePreprocessor.process(new_obs) if len(new_obs) == 0: done = True else: transition = (obs, action, rew, new_obs, float(done), act_step_t) obs = new_obs act_step_t += 1 if act_step_t - demo_picked_step >= MIN_STEPS_TO_FOLLOW_DEMO_FOR: demo_picked = 0 reward_shaper.set_demo_picked(act_step_t, demo_picked) updates_queue.put( UpdateMessage(UPDATE_STATUS_CONTINUE, transition, demo_picked)) # Post episode logging summary = tf.Summary(value=[ tf.Summary.Value(tag="rewards", simple_value=episode_rewards[-1]) ]) summary_writer.add_summary(summary, act_step_t) summary = tf.Summary( value=[tf.Summary.Value(tag="eps", simple_value=update_eps)]) summary_writer.add_summary(summary, act_step_t) summary = tf.Summary(value=[ tf.Summary.Value(tag="episode_steps", simple_value=act_step_t - act_started_step_t) ]) summary_writer.add_summary(summary, act_step_t) mean_5ep_reward = round(float(np.mean(episode_rewards[-5:])), 1) num_episodes = len(episode_rewards) if print_freq is not None and num_episodes % print_freq == 0: logger.record_tabular("steps", act_step_t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 5 episode reward", mean_5ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(act_step_t))) logger.dump_tabular() # Wait for the learning to finish and synchronize synchronize_q_func_vars() # Record demo_switching_stats if num_episodes % 10 == 0: save_demo_switching_stats(demo_switching_stats, stats_dir, num_episodes) if checkpoint_freq is not None and num_episodes % checkpoint_freq == 0: # Periodically save the model rec_model_file = os.path.join( td, "model_{}_{:.2f}".format(num_episodes, mean_5ep_reward)) save_variables(rec_model_file) # Check whether the model is the best so far if saved_mean_reward is None or mean_5ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_5ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_5ep_reward updates_queue.put(UpdateMessage(UPDATE_STATUS_FINISH, None, None))
def learn(env, network, seed=None, pool=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_initial_eps=1.0, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=1, checkpoint_freq=100, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, experiment_name='unnamed', load_path=None, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. experiment_name: str name of the experiment (default: trial) load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=exploration_initial_eps, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() reward_shaper = ActionAdviceRewardShaper('../completed-observations') reward_shaper.load() full_exp_name = '{}-{}'.format(date.today().isoformat(), experiment_name) experiment_dir = os.path.join('experiments', full_exp_name) if not os.path.exists(experiment_dir): os.makedirs(experiment_dir) summary_dir = os.path.join(experiment_dir, 'summaries') os.makedirs(summary_dir, exist_ok=True) summary_writer = tf.summary.FileWriter(summary_dir) checkpoint_dir = os.path.join(experiment_dir, 'checkpoints') os.makedirs(checkpoint_dir, exist_ok=True) with tempfile.TemporaryDirectory() as td: td = checkpoint_dir or td os.makedirs(td, exist_ok=True) model_file = os.path.join(td, "best_model") model_saved = False saved_mean_reward = None if os.path.exists(model_file): print('Model is loading') load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) episode_rewards = [] update_step_t = 0 while update_step_t < total_timesteps: # Reset the environment obs = env.reset() obs = StatePreprocessor.process(obs) episode_rewards.append(0.0) reset = True done = False # Sample the episode until it is completed act_step_t = update_step_t while not done: if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(act_step_t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(act_step_t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log( 1. - exploration.value(act_step_t) + exploration.value(act_step_t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True biases = reward_shaper.get_action_potentials(obs) action = act(np.array(obs)[None], biases, update_eps=update_eps, **kwargs)[0] reset = False pairs = env.step(action) action, (new_obs, rew, done, _) = pairs[-1] # Write down the real reward but learn from normalized version episode_rewards[-1] += rew rew = np.sign(rew) * np.log(1 + np.abs(rew)) new_obs = StatePreprocessor.process(new_obs) logger.log('{}/{} obs {} action {}'.format( act_step_t, total_timesteps, obs, action)) act_step_t += 1 if len(new_obs) == 0: done = True else: replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs # Post episode logging summary = tf.Summary(value=[ tf.Summary.Value(tag="rewards", simple_value=episode_rewards[-1]) ]) summary_writer.add_summary(summary, act_step_t) summary = tf.Summary( value=[tf.Summary.Value(tag="eps", simple_value=update_eps)]) summary_writer.add_summary(summary, act_step_t) summary = tf.Summary(value=[ tf.Summary.Value(tag="episode_steps", simple_value=act_step_t - update_step_t) ]) summary_writer.add_summary(summary, act_step_t) mean_5ep_reward = round(np.mean(episode_rewards[-5:]), 1) num_episodes = len(episode_rewards) if print_freq is not None and num_episodes % print_freq == 0: logger.record_tabular("steps", act_step_t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 5 episode reward", mean_5ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(act_step_t))) logger.dump_tabular() # Do the learning start = time.time() while update_step_t < min(act_step_t, total_timesteps): if update_step_t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(update_step_t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None biases_t = pool.map(reward_shaper.get_action_potentials, obses_t) biases_tp1 = pool.map(reward_shaper.get_action_potentials, obses_tp1) td_errors, weighted_error = train(obses_t, biases_t, actions, rewards, obses_tp1, biases_tp1, dones, weights) # Loss logging summary = tf.Summary(value=[ tf.Summary.Value(tag='weighted_error', simple_value=weighted_error) ]) summary_writer.add_summary(summary, update_step_t) if prioritized_replay: new_priorities = np.abs( td_errors) + prioritized_replay_eps replay_buffer.update_priorities( batch_idxes, new_priorities) if update_step_t % target_network_update_freq == 0: # Update target network periodically. update_target() update_step_t += 1 stop = time.time() logger.log("Learning took {:.2f} seconds".format(stop - start)) if checkpoint_freq is not None and num_episodes % checkpoint_freq == 0: # Periodically save the model and the replay buffer rec_model_file = os.path.join( td, "model_{}_{:.2f}".format(num_episodes, mean_5ep_reward)) save_variables(rec_model_file) buffer_file = os.path.join( td, "buffer_{}_{}".format(num_episodes, update_step_t)) with open(buffer_file, 'wb') as foutput: cloudpickle.dump(replay_buffer, foutput) # Check whether it is best if saved_mean_reward is None or mean_5ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_5ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_5ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
def save(self, save_path): if save_path is not None: info('saving vars to ' + save_path) U.save_variables(save_path) else: info('save_path is None, not saving')
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, initial_exploration_p=1.0, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=100, prioritized_replay=True, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, pretraining_obs=None, pretraining_targets=None, pretrain_steps=1000, pretrain_experience=None, pretrain_num_episodes=0, double_q=True, expert_qfunc=None, aggrevate_steps=0, pretrain_lr=1e-4, sampling_starts=0, beb_agent=None, qvalue_file="qvalue.csv", **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) beb_agent: takes Q values and suggests actions after adding beb bonus **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) nenvs = env.num_envs print("Bayes-DeepQ:", env.num_envs) print("Total timesteps", total_timesteps) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, train_target, copy_target_to_q, debug = brl_deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), pretrain_optimizer=tf.train.AdamOptimizer(learning_rate=pretrain_lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, double_q=double_q) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=initial_exploration_p, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") print("Model will be saved at ", model_file) model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) print('Loaded model from {}'.format(load_path)) if pretraining_obs is not None: # pretrain target and copy to qfunc print("Pretrain steps ", pretrain_steps) for i in range(pretrain_steps): pretrain_errors = train_target(pretraining_obs, pretraining_targets) if i % 500 == 0: print("Step {}".format(i), np.mean(pretrain_errors)) if np.mean(pretrain_errors) < 1e-5: break min_rew = 0 # copy all pre-experiences if pretrain_experience is not None: for obs, action, rew, new_obs, done in zip(*pretrain_experience): replay_buffer.add(obs, action, rew, new_obs, float(done)) print("Added {} samples to ReplayBuffer".format( len(replay_buffer._storage))) min_rew = min(rew, min_rew) print("Pretrain Error", np.mean(pretrain_errors)) else: print("Skipping pretraining") update_target() print("Save the pretrained model", model_file) save_variables(model_file) episode_reward = np.zeros(nenvs, dtype=np.float32) saved_mean_reward = None obs = env.reset() reset = True epoch_episode_rewards = [] epoch_episode_steps = [] epoch_actions = [] epoch_episodes = 0 episode_rewards_history = deque(maxlen=100) episode_step = np.zeros(nenvs, dtype=int) episodes = 0 #scalar start = 0 if expert_qfunc is None: aggrevate_steps = 0 # if pretraining_obs is None or pretraining_obs.size == 0: # episode_rewards = [] # else: # episode_rewards = [[0.0]] * pretrain_num_episodes # start = len(pretraining_obs) # if print_freq is not None: # for t in range(0, len(pretraining_obs), print_freq): # logger.record_tabular("steps", t) # logger.record_tabular("episodes", pretrain_num_episodes) # logger.record_tabular("mean 100 episode reward", min_rew) # logger.record_tabular("% time spent exploring", 0) # logger.dump_tabular() # print("pretraining episodes", pretrain_num_episodes, "steps {}/{}".format(t, total_timesteps)) with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") print("Aggrevate: Model will be saved at ", model_file) model_saved = False for i in range(aggrevate_steps): obses_t, values = [], [] for j in range(30): # TODO: 30 should be changed to max horizon? t = np.random.randint(50) + 1 obs = env.reset() for k in range(t): action, value = act(np.array(obs)[None], update_eps=exploration.value(i)) obs, rew, done, _ = env.step(action) obses_t.extend(obs) # Roll out expert policy episode_reward[:] = 0 dones = np.array([False] * obs.shape[0]) for k in range(51 - t): obs, rew, done, _ = env.step( [expert_qfunc.step(o) for o in obs]) dones[done] = True rew[dones] = 0 episode_reward += 0.95**k * rew # TODO: change this to exploration-savvy action # action = np.random.randint(env.action_space.n, size=len(obs)) # Rocksample specific, take sensing actions # prob = np.array([1] * 6 + [2] * (env.action_space.n - 6), dtype=np.float32) # prob = prob / np.sum(prob) # action = np.random.choice(env.action_space.n, p=prob, size=len(action)) # new_obs, rew, done, _ = env.step(action) # value = rew.copy() # value[np.logical_not(done)] += gamma * np.max(expert_qfunc.value(new_obs[np.logical_not(done)]), axis=1) # current_value[tuple(np.array([np.arange(len(action)), action]))] = value # episode reward # episode_reward[np.logical_not(done)] += np.max(current_value[np.logical_not(done)], axis=1) # episode_rewards_history.extend(np.max(current_value, axis=1)) value[tuple([np.arange(len(action)), action])] = episode_reward values.extend(value) print("Aggrevate got {} / {} new data".format( obs.shape[0] * 30, len(obses_t))) # print("Mean expected cost at the explored points", np.mean(np.max(values, axis=1))) for j in range(1000): obs, val = np.array(obses_t), np.array(values) # indices = np.random.choice(len(obs), min(1000, len(obses_t))) aggrevate_errors = train_target(obs, val) if np.mean(aggrevate_errors) < 1e-5: print("Aggrevate Step {}, {}".format(i, j), np.mean(aggrevate_errors)) break print("Aggrevate Step {}, {}".format(i, j), np.mean(aggrevate_errors)) update_target() print("Save the aggrevate model", i, model_file) # Evaluate current policy episode_reward[:] = 0 obs = env.reset() num_episodes = 0 k = np.zeros(len(obs)) while num_episodes < 100: action, _ = act(np.array(obs)[None], update_eps=0.0) # print(action) obs, rew, done, _ = env.step(action) episode_reward += 0.95**k * rew k += 1 for d in range(len(done)): if done[d]: episode_rewards_history.append(episode_reward[d]) episode_reward[d] = 0. k[d] = 0 num_episodes += 1 mean_1000ep_reward = round(np.mean(episode_rewards_history), 2) print("Mean discounted reward", mean_1000ep_reward) logger.record_tabular("mean 100 episode reward", mean_1000ep_reward) logger.dump_tabular() save_variables(model_file) t = 0 # could start from pretrain-steps epoch = 0 while True: epoch += 1 if t >= total_timesteps: break if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True # no randomization # update_eps = 0 print('update_eps', int(100 * exploration.value(t))) qv_error = [] obs = env.reset() for m in range(100): action, q_values = act(np.array(obs)[None], update_eps=update_eps, **kwargs) if beb_agent is not None: action = beb_agent.step(obs, action, q_values, exploration.value(t)) # if expert_qfunc is not None: # v = expert_qfunc.value(obs) # qv_error += [v - q_values[0]] env_action = action reset = False new_obs, rew, done, info = env.step(env_action) if t >= sampling_starts: # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, done) obs = new_obs episode_reward += rew episode_step += 1 for d in range(len(done)): if done[d]: # Episode done. # discount(np.array(rewards), gamma) consider doing discount epoch_episode_rewards.append(episode_reward[d]) episode_rewards_history.append(episode_reward[d]) epoch_episode_steps.append(episode_step[d]) episode_reward[d] = 0. episode_step[d] = 0 epoch_episodes += 1 episodes += 1 t += 100 * nenvs if t > learning_starts: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if target_network_update_freq is not None and t > sampling_starts \ and epoch % target_network_update_freq == 0: # Update target network periodically. print("Update target") update_target() mean_1000ep_reward = round(np.mean(episode_rewards_history), 2) num_episodes = episodes if print_freq is not None: logger.record_tabular("steps", t) logger.record_tabular("td errors", np.mean(td_errors)) logger.record_tabular("td errors std", np.std(np.abs(td_errors))) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 1000 episode reward", mean_1000ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() print("episodes", num_episodes, "steps {}/{}".format(t, total_timesteps)) if (checkpoint_freq is not None and t > learning_starts and len(episode_rewards_history) >= 1000): if saved_mean_reward is None or mean_1000ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_1000ep_reward)) print("saving model") save_variables(model_file) model_saved = True saved_mean_reward = mean_1000ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.5, initial_exploration_p=1.0, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=1, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1, gamma=1.0, target_network_update_freq=40000,#10000, prioritized_replay=True, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, double_q=True, obs_dim=None, qmdp_expert=None, **network_kwargs ): """Train a bootstrap-dqn model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) qmdp_expert: takes obs, bel -> returns qmdp q-vals **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) nenvs = env.num_envs print("Bootstrap DQN with {} envs".format(nenvs)) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph # import IPython; IPython.embed() #assert isinstance(env.envs[0].env.env.env, ExplicitBayesEnv) #belief_space = env.envs[0].env.env.env.belief_space #observation_space = env.envs[0].env.env.env.internal_observation_space obs_space = env.observation_space assert obs_dim is not None observation_space = Box(obs_space.low[:obs_dim], obs_space.high[:obs_dim], dtype=np.float32) belief_space = Box(obs_space.low[obs_dim:], obs_space.high[obs_dim:], dtype=np.float32) num_experts = belief_space.high.size # print("Num experts", num_experts) def make_obs_ph(name): return ObservationInput(observation_space, name=name) def make_bel_ph(name): return ObservationInput(belief_space, name=name) q_func = build_q_func(network, num_experts, **network_kwargs) print('=============== got qfunc ============== ') act, train, update_target, debug = residual_bqn_fixed_expert.build_train( make_obs_ph=make_obs_ph, make_bel_ph=make_bel_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, double_q=double_q ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=initial_exploration_p, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_reward = np.zeros(nenvs, dtype = np.float32) saved_mean_reward = None reset = True epoch_episode_rewards = [] epoch_episode_steps = [] epoch_actions = [] epoch_episodes = 0 episode_rewards_history = deque(maxlen=1000) episode_step = np.zeros(nenvs, dtype = int) episodes = 0 #scalar with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") print("Model will be saved at " , model_file) model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) print('Loaded model from {}'.format(load_path)) t = 0 while t < total_timesteps: if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} update_eps = exploration.value(t) update_param_noise_threshold = 0. obs = env.reset() episode_reward = np.zeros(nenvs, dtype = np.float32) episode_step[:] = 0 obs, bel = obs[:, :-belief_space.shape[0]], obs[:, -belief_space.shape[0]:] expert_qval = qmdp_expert(obs, bel) start_time = timer.time() horizon = 100 for m in range(horizon): action, q_values = act(np.array(obs)[None], np.array(bel)[None], np.array(expert_qval)[None], update_eps=update_eps, **kwargs) env_action = action new_obs, rew, done, info = env.step(env_action) new_obs, new_bel = new_obs[:, :-belief_space.shape[0]], new_obs[:, -belief_space.shape[0]:] new_expert_qval = qmdp_expert(new_obs, new_bel) # Store transition in the replay buffer. replay_buffer.add(obs, bel, expert_qval, action, rew, new_obs, new_bel, new_expert_qval, done) # if np.random.rand() < 0.05: # # # write to file # # with open('rbqn_fixed_expert.csv', 'a') as f: # # out = ','.join(str(np.around(x,2)) for x in [bel[0], obs[0], q_values[0]]) # # f.write(out + "\n") # print(np.around(bel[-1], 2), rew[-1], np.around(q_values[-1], 1), np.around(expert_qval[-1], 1)) obs = new_obs bel = new_bel expert_qval = new_expert_qval episode_reward += 0.95 ** episode_step * rew episode_step += 1 # print(action, done, obs) for d in range(len(done)): if done[d]: epoch_episode_rewards.append(episode_reward[d]) episode_rewards_history.append(episode_reward[d]) epoch_episode_steps.append(episode_step[d]) episode_reward[d] = 0. episode_step[d] = 0 epoch_episodes += 1 episodes += 1 # import IPython;IPython.embed(); #import sys; sys.exit(0) print("Took {}".format(timer.time() - start_time)) t += horizon * nenvs num_experts = 16 if t > learning_starts and t % train_freq == 0: for _ in range(num_experts): # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) if experience is None: continue obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones, weights, batch_idxes = experience else: experience = replay_buffer.sample(batch_size) if experience is None: continue obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones = experience weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, bels_t, expert_qvals, actions, rewards, obses_tp1, bels_tp1, expert_qvals_1, dones, weights) if np.random.rand() < 0.01: print("TD error", np.around(td_errors, 1)) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. print("Update target") update_target() mean_100ep_reward = round(np.mean(episode_rewards_history), 2) num_episodes = episodes if print_freq is not None and num_episodes % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 1000 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() print("episodes ", num_episodes, "steps {}/{}".format(t, total_timesteps)) print("mean reward", mean_100ep_reward) print("exploration", int(100 * exploration.value(t))) if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) print("saving model") save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
def save_policy(self, name): U.save_variables(name, variables=self.get_variables())
def learn(env, policy_func, dataset, optim_batch_size=100, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=1e-3, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters / 10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new polic dof = 5 # placeholder ob_config = U.get_placeholder_cached(name="ob") ob_target = U.get_placeholder_cached(name="goal") obs_pos = U.get_placeholder_cached(name="obs_pos") obs_ori = U.get_placeholder_cached(name="obs_ori") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac - pi.ac)) #loss = tf.reduce_mean(pi.pd.neglogp(ac)) #var_list = pi.get_trainable_variables() all_var_list = pi.get_variables() var_list = [ v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd") or v.name.startswith("pi/obs") ] adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function( [ob_config, ob_target, obs_pos, obs_ori, ac, stochastic], [loss] + [U.flatgrad(loss, var_list)]) U.initialize() if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, 'model') if osp.exists(savedir_fname): try: U.load_variables(savedir_fname, pi.get_variables()) except: print( "size of the pretrained model does not match the current model" ) adam.sync() logger.log("Pretraining with Behavior Cloning...") thresh = 0.1 for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') tar = ob_expert[:, dof:2 * dof] cur = ob_expert[:, :dof] avo = np.zeros_like(cur) for i in range(len(avo)): avo[i] = ac_expert[i] - thresh * ( tar[i] - cur[i]) / np.linalg.norm(tar[i] - cur[i]) # avo = ac_expert - thresh * (tar - cur) / np.linalg.norm(tar - cur) train_loss, g = lossandgrad(cur, tar, ob_expert[:, -6:-3], ob_expert[:, -3:], avo, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') tar = ob_expert[:, dof:2 * dof] cur = ob_expert[:, :dof] avo = np.zeros_like(cur) for i in range(len(avo)): avo[i] = ac_expert[i] - thresh * ( tar[i] - cur[i]) / np.linalg.norm(tar[i] - cur[i]) val_loss, _ = lossandgrad(cur, tar, ob_expert[:, -6:-3], ob_expert[:, -3:], avo, True) logger.log("Training loss: {}, Validation loss: {}".format( np.rad2deg(np.sqrt(train_loss)), np.rad2deg(np.sqrt(val_loss)))) U.save_variables(savedir_fname, variables=pi.get_variables()) return savedir_fname
def learn(env, policy_func, dataset, optim_batch_size=256, max_iters=5e3, adam_epsilon=1e-7, optim_stepsize=1e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters / 10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy dof = 5 # placeholder ob_config = U.get_placeholder_cached(name="ob") ob_target = U.get_placeholder_cached(name="goal") obs_pos = U.get_placeholder_cached(name="obs_pos") obs_ori = U.get_placeholder_cached(name="obs_ori") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac - pi.ac)) # loss = tf.reduce_mean(pi.pd.neglogp(ac)) all_var_list = pi.get_trainable_variables() var_list = [ v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd") or v.name.startswith("pi/obs") ] AdamOp = tf.train.AdamOptimizer(learning_rate=optim_stepsize, epsilon=adam_epsilon).minimize( loss, var_list=var_list) U.initialize() if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, 'model') if osp.exists(savedir_fname): try: U.load_variables(savedir_fname, pi.get_variables()) except: print( "size of the pretrained model does not match the current model" ) logger.log("Pretraining with Behavior Cloning...") thresh = 0.1 for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') tar = ob_expert[:, dof:2 * dof] cur = ob_expert[:, :dof] avo = np.zeros_like(cur) for i in range(len(avo)): avo[i] = ac_expert[i] - thresh * ( tar[i] - cur[i]) / np.linalg.norm(tar[i] - cur[i]) # avo = ac_expert - thresh * (tar - cur) / np.linalg.norm(tar - cur) U.get_session().run(AdamOp, feed_dict={ ob_config: cur, ob_target: tar, obs_pos: ob_expert[:, -6:-3], obs_ori: ob_expert[:, -3:], ac: avo, stochastic: True }) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') tar = ob_expert[:, dof:2 * dof] cur = ob_expert[:, :dof] avo = np.zeros_like(cur) for i in range(len(avo)): avo[i] = ac_expert[i] - thresh * ( tar[i] - cur[i]) / np.linalg.norm(tar[i] - cur[i]) val_loss = U.get_session().run(loss, feed_dict={ ob_config: cur, ob_target: tar, obs_pos: ob_expert[:, -6:-3], obs_ori: ob_expert[:, -3:], ac: avo, stochastic: True }) logger.log("Validation loss: {}".format( np.rad2deg(np.sqrt(val_loss)))) allvar = pi.get_variables() savevar = [v for v in allvar if "Adam" not in v.name] U.save_variables(savedir_fname, variables=savevar) return savedir_fname
def save(self, save_path): U.save_variables(save_path, None, self.sess)
def run_main(opts): if os.path.exists(opts.model_dir): print('Path already exists. Remove? y for yes') input_char = getch.getch() if not input_char == 'y': print('Exiting') return shutil.rmtree(opts.model_dir) os.makedirs(opts.model_dir) os.makedirs(os.path.join(opts.model_dir, 'logs')) os.makedirs(os.path.join(opts.model_dir, 'weights')) # Create the environment with specified arguments state_data, action_data = process_data(opts.bc_data) #env = gym.make('MountainCar-v0') env = gym.make('LunarLander-v2') env._max_episode_steps = 1200 x, model, logits = create_model() train, loss, labels = create_training(logits) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Create summaries merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(opts.model_dir, 'logs'), sess.graph) print(tf.global_variables()) sess.run(tf.global_variables_initializer()) update = 0 save_freq = 1000 while True: for _ in range(25): # Get a random batch from the data batch_index = np.random.choice(len(state_data), 64) #Batch size state_batch, action_batch = state_data[batch_index], action_data[ batch_index] # Train the model. _, cur_loss, cur_summaries = sess.run([train, loss, merged], feed_dict={ x: state_data, labels: action_data }) print("Loss: {}".format(cur_loss)) train_writer.add_summary(cur_summaries, update) update += 1 if update % save_freq == 0: save_variables(os.path.join(opts.model_dir, 'weights', opts.model_weights), sess=sess) done = False obs = env.reset() rewards = 0 action_freq = [0 for _ in range(4)] while not done: env.render() # Handle the toggling of different application states action = sess.run(model, feed_dict={x: [obs.flatten()]})[0] action_freq[action] += 1 obs, reward, done, info = env.step(action) rewards += reward reward_summary = tf.Summary( value=[tf.Summary.Value(tag='reward', simple_value=rewards)]) act_summary = tf.Summary(value=[ tf.Summary.Value(tag='act_distribution', histo=log_histogram(action_freq, 1, bins=4)) ]) train_writer.add_summary(reward_summary, update // 25) train_writer.add_summary(act_summary, update // 25) print("Num updates: {}".format(update)) print("Total reward: {}".format(rewards)) print("Action dict: {}".format(action_freq))
def save(self, path): U.save_variables(path, sess=self.sess)
def train_dqn(opts, seed=None, lr=1e-3, total_timesteps=500000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, checkpoint_freq=500000, learning_starts=1000, gamma=1.000, target_network_update_freq=3000, load_path=None): """ Runs the main recorder by binding certain discrete actions to keys. """ if os.path.exists(opts.model_dir): print('Path already exists. Remove? y for yes') input_char = getch.getch() if not input_char == 'y': print('Exiting') return shutil.rmtree(opts.model_dir) os.makedirs(opts.model_dir) os.makedirs(os.path.join(opts.model_dir, 'logs')) os.makedirs(os.path.join(opts.model_dir, 'weights')) #env = gym.make('MountainCar-v0') env = gym.make('LunarLander-v2') env._max_episode_steps = 1200 sess = get_session() set_global_seeds(seed) train_writer = tf.summary.FileWriter(os.path.join(opts.model_dir, 'logs'), sess.graph) q_func = build_q_func('mlp') # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10) replay_buffer = ReplayBuffer(buffer_size) # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] obs = env.reset() for t in range(total_timesteps): # Take action and update exploration to the newest value env.render() update_eps = exploration.value(t) action = act(np.array(obs)[None], update_eps=update_eps)[0] new_obs, rew, done, _ = env.step(action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: print("Exploration value: {}".format(exploration.value(t))) print("Last 25 episode rewards: {}".format(episode_rewards[-25:])) reward_summary = tf.Summary(value=[ tf.Summary.Value(tag='reward', simple_value=episode_rewards[-1]) ]) train_writer.add_summary(reward_summary, t) obs = env.reset() episode_rewards.append(0.0) if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors, summary = train(obses_t, actions, rewards, obses_tp1, dones, weights) train_writer.add_summary(summary, t) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() if t > learning_starts and t % checkpoint_freq == 0: save_variables( os.path.join(opts.model_dir, 'weights', '{}.model'.format(t))) save_variables(os.path.join(opts.model_dir, 'weights', 'last.model'))
def save_variables(self, save_path): tf_util.save_variables(save_path, sess=self.sess)
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, debug_flag=False, dpsr_replay=False, dpsr_replay_alpha1=0.6, dpsr_replay_alpha2=0.6, dpsr_replay_candidates_size=5, dpsr_common_replacement_candidates_number=128, dpsr_replay_beta_iters=None, dpsr_replay_beta0=0.4, dpsr_replay_eps=1e-6, dpsr_state_recycle_max_priority_set=True, state_recycle_freq=500, param_noise=False, callback=None, load_path=None, atari_env=True, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. checkpoint_path: str the saving path of the checkpoint files learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. debug_flag: bool if True DEBUG mode will be switched on dpsr_replay: bool if True DPSR replay buffer will be used dpsr_replay_alpha1: float alpha1 parameter for DPSR replay buffer dpsr_replay_alpha2: float alpha2 parameter for DPSR replay buffer dpsr_replay_candidates_size: int candidates size parameter for DPSR replay buffer state recycle dpsr_common_replacement_candidates_number: int candidates size parameter for DPSR replay buffer common replacement dpsr_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. dpsr_replay_beta0: float initial value of beta for prioritized replay buffer dpsr_replay_eps: float epsilon to add to the TD errors when updating priorities. dpsr_state_recycle_max_priority_set: bool if True priority will be set as MAX when doing state recycling state_recycle_freq: int do state recycling every 'state_recycle_freq' steps param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) atari_env: bool if True the env is an atari env **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) elif dpsr_replay: replay_buffer = DoublePrioritizedStateRecycledReplayBuffer( buffer_size, alpha1=dpsr_replay_alpha1, alpha2=dpsr_replay_alpha2, candidates_size=dpsr_replay_candidates_size, # Not Used: env_id=env.env.spec.id env_id=None) if dpsr_replay_beta_iters is None: dpsr_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(dpsr_replay_beta_iters, initial_p=dpsr_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False env_clone_state = None if dpsr_replay: env_clone_state = env.clone_state() if atari_env \ else copy.deepcopy(env.envs[0].env) new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. if dpsr_replay: if replay_buffer.not_full(): replay_buffer.add(obs, action, rew, new_obs, float(done), env_clone_state, t) elif state_recycle_freq and t % state_recycle_freq == 0: current_env_copy = None if not atari_env: current_env_copy = copy.deepcopy(env.envs[0].env) candidates_idxes, candidates = replay_buffer.replacement_candidates( ) candidates_recycled = [] for candidate in candidates: cand_obs, cand_old_act, *_, cand_state, cand_t = candidate if atari_env: new_env = copy.deepcopy(env) new_env.reset() new_env.restore_state(cand_state) else: env.envs[0].env = cand_state new_action_cand = act(np.array(cand_obs)[None], update_eps=0.0, **kwargs)[0] # make sure that a new experience is made if new_action_cand != cand_old_act: new_action = new_action_cand else: while True: new_action_cand = env.action_space.sample() if new_action_cand != cand_old_act: new_action = new_action_cand break if atari_env: new_new_obs, new_rew, new_done, _ = new_env.step( new_action) else: new_new_obs, new_rew, new_done, _ = env.step( new_action) new_data = (cand_obs, new_action, new_rew, new_new_obs, new_done, cand_state, t) candidates_recycled.append(new_data) # get the new TDEs after recycling cand_obses = np.array( [data[0] for data in candidates_recycled]) cand_acts = np.array( [data[1] for data in candidates_recycled]) cand_rews = np.array( [data[2] for data in candidates_recycled]) cand_new_obses = np.array( [data[3] for data in candidates_recycled]) cand_dones = np.array( [data[4] for data in candidates_recycled]) cand_weights = np.zeros_like(cand_rews) cand_td_errors = train(cand_obses, cand_acts, cand_rews, cand_new_obses, cand_dones, cand_weights) new_cand_priorities = np.abs( cand_td_errors) + dpsr_replay_eps replay_buffer.update_priorities(candidates_idxes, new_cand_priorities) replay_buffer.state_recycle( candidates_idxes, candidates_recycled, cand_td_errors, dpsr_state_recycle_max_priority_set) replay_buffer.add(obs, action, rew, new_obs, float(done), env_clone_state, t) if not atari_env: env.envs[0].env = current_env_copy else: # common_replacement_candidates_number = 128 candidates_idxes, candidates = replay_buffer.replacement_candidates( dpsr_common_replacement_candidates_number) cand_timestamps = [ candidate[-1] for candidate in candidates ] replace_idx = candidates_idxes[np.argmin(cand_timestamps)] replay_buffer.add(obs, action, rew, new_obs, float(done), env_clone_state, t, replace_idx) else: replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience elif dpsr_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, env_states, timestamps, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) elif dpsr_replay: new_priorities = np.abs(td_errors) + dpsr_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = np.round(np.mean(episode_rewards[-101:-1]), 1) mean_10ep_reward = np.round(np.mean(episode_rewards[-11:-1]), 1) mean_5ep_reward = np.round(np.mean(episode_rewards[-6:-1]), 1) last_1ep_reward = np.round(np.mean(episode_rewards[-2:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("mean 10 episode reward", mean_10ep_reward) logger.record_tabular("mean 5 episode reward", mean_5ep_reward) logger.record_tabular("last episode reward", last_1ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
obs = np.array( [[np.cos(row.obnow1), np.sin(row.obnow1), row.obnow2]]) action = np.array([[row.action]]) r = np.array([[row.reward]]) new_obs = np.array([[row.obnext1, row.obnext2, row.obnext3]]) agent.store_transition(obs, action, r, new_obs, np.zeros_like(r)) # training for t_train in range(t_train_time): cl, al = agent.train() epoch_critic_losses.append(cl) epoch_actor_losses.append(al) print( 'step' + str(t_train) + ',critic_loss:' + str(cl) + ',action_loss:', str(al)) save_variables('ddpg_model') else: load_variables(load_path) # plt.figure(1) # plt.plot(epoch_critic_losses) # plt.plot(epoch_actor_losses) # plt.show() env = gym.make('Pendulum-v0') obs = env.reset() for time in range(t_test_time): action, q, _, _ = agent.step(obs, apply_noise=False, compute_Q=True) s_, r, done, _ = env.step(action) obs = s_ env.render()
def learn(env, use_ddpg=False, gamma=0.9, use_rs=False, controller_kargs={}, option_kargs={}, seed=None, total_timesteps=100000, print_freq=100, callback=None, checkpoint_path=None, checkpoint_freq=10000, load_path=None, **others): """Train a deepq model. Parameters ------- env: gym.Env environment to train on use_ddpg: bool whether to use DDPG or DQN to learn the option's policies gamma: float discount factor use_rs: bool use reward shaping controller_kargs arguments for learning the controller policy. option_kargs arguments for learning the option policies. seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. total_timesteps: int number of env steps to optimizer for print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. load_path: str path to load the model from. (default: None) Returns ------- act: ActWrapper (meta-controller) Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. act: ActWrapper (option policies) Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) controller = ControllerDQN(env, **controller_kargs) if use_ddpg: options = OptionDDPG(env, gamma, total_timesteps, **option_kargs) else: options = OptionDQN(env, gamma, total_timesteps, **option_kargs) option_s = None # State where the option initiated option_id = None # Id of the current option being executed option_rews = [] # Rewards obtained by the current option episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() options.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Selecting an option if needed if option_id is None: valid_options = env.get_valid_options() option_s = obs option_id = controller.get_action(option_s, valid_options) option_rews = [] # Take action and update exploration to the newest value action = options.get_action(env.get_option_observation(option_id), t, reset) reset = False new_obs, rew, done, info = env.step(action) # Saving the real reward that the option is getting if use_rs: option_rews.append(info["rs-reward"]) else: option_rews.append(rew) # Store transition for the option policies for _s, _a, _r, _sn, _done in env.get_experience(): options.add_experience(_s, _a, _r, _sn, _done) # Learn and update the target networks if needed for the option policies options.learn(t) options.update_target_network(t) # Update the meta-controller if needed # Note that this condition always hold if done is True if env.did_option_terminate(option_id): option_sn = new_obs option_reward = sum( [_r * gamma**_i for _i, _r in enumerate(option_rews)]) valid_options = [] if done else env.get_valid_options() controller.add_experience(option_s, option_id, option_reward, option_sn, done, valid_options, gamma**(len(option_rews))) controller.learn() controller.update_target_network() controller.increase_step() option_id = None obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() options.reset() episode_rewards.append(0.0) reset = True # General stats mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.dump_tabular() if (checkpoint_freq is not None and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) #load_variables(model_file) return controller.act, options.act
def learn(env, network, seed=None, use_crm=False, use_rs=False, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. use_crm: bool use counterfactual experience to train the policy use_rs: bool use reward shaping lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Adjusting hyper-parameters by considering the number of RM states for crm if use_crm: rm_states = env.get_num_rm_states() buffer_size = rm_states * buffer_size batch_size = rm_states * batch_size # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # Store transition in the replay buffer. if use_crm: # Adding counterfactual experience (this will alrady include shaped rewards if use_rs=True) experiences = info["crm-experience"] elif use_rs: # Include only the current experince but shape the reward experiences = [info["rs-experience"]] else: # Include only the current experience (standard deepq) experiences = [(obs, action, rew, new_obs, float(done))] # Adding the experiences to the replay buffer for _obs, _action, _r, _new_obs, _done in experiences: replay_buffer.add(_obs, _action, _r, _new_obs, _done) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) return act
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) ############################## RL-S Prepare ############################################# # model saved name saved_name = "0817" ##### # Setup Training Record ##### save_new_data = False create_new_file = False create_new_file_rule = create_new_file save_new_data_rule = save_new_data create_new_file_RL = False save_new_data_RL = save_new_data create_new_file_replay_buffer = False save_new_data_replay_buffer = save_new_data is_training = False trajectory_buffer = deque(maxlen=20) if create_new_file_replay_buffer: if osp.exists("recorded_replay_buffer.txt"): os.remove("recorded_replay_buffer.txt") else: replay_buffer_dataset = np.loadtxt("recorded_replay_buffer.txt") for data in replay_buffer_dataset: obs, action, rew, new_obs, done = _extract_data(data) replay_buffer.add(obs, action, rew, new_obs, done) recorded_replay_buffer_outfile = open("recorded_replay_buffer.txt","a") recorded_replay_buffer_format = " ".join(("%f",)*31)+"\n" ##### # Setup Rule-based Record ##### create_new_file_rule = True # create state database if create_new_file_rule: if osp.exists("state_index_rule.dat"): os.remove("state_index_rule.dat") os.remove("state_index_rule.idx") if osp.exists("visited_state_rule.txt"): os.remove("visited_state_rule.txt") if osp.exists("visited_value_rule.txt"): os.remove("visited_value_rule.txt") visited_state_rule_value = [] visited_state_rule_counter = 0 else: visited_state_rule_value = np.loadtxt("visited_value_rule.txt") visited_state_rule_value = visited_state_rule_value.tolist() visited_state_rule_counter = len(visited_state_rule_value) visited_state_rule_outfile = open("visited_state_rule.txt", "a") visited_state_format = " ".join(("%f",)*14)+"\n" visited_value_rule_outfile = open("visited_value_rule.txt", "a") visited_value_format = " ".join(("%f",)*2)+"\n" visited_state_tree_prop = rindex.Property() visited_state_tree_prop.dimension = 14 visited_state_dist = np.array([[0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2]]) visited_state_rule_tree = rindex.Index('state_index_rule',properties=visited_state_tree_prop) ##### # Setup RL-based Record ##### if create_new_file_RL: if osp.exists("state_index_RL.dat"): os.remove("state_index_RL.dat") os.remove("state_index_RL.idx") if osp.exists("visited_state_RL.txt"): os.remove("visited_state_RL.txt") if osp.exists("visited_value_RL.txt"): os.remove("visited_value_RL.txt") if create_new_file_RL: visited_state_RL_value = [] visited_state_RL_counter = 0 else: visited_state_RL_value = np.loadtxt("visited_value_RL.txt") visited_state_RL_value = visited_state_RL_value.tolist() visited_state_RL_counter = len(visited_state_RL_value) visited_state_RL_outfile = open("visited_state_RL.txt", "a") visited_state_format = " ".join(("%f",)*14)+"\n" visited_value_RL_outfile = open("visited_value_RL.txt", "a") visited_value_format = " ".join(("%f",)*2)+"\n" visited_state_tree_prop = rindex.Property() visited_state_tree_prop.dimension = 14 visited_state_dist = np.array([[0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2, 10, 0.2, 2]]) visited_state_RL_tree = rindex.Index('state_index_RL',properties=visited_state_tree_prop) ############################## RL-S Prepare End ############################################# # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action, q_function_cz = act(np.array(obs)[None], update_eps=update_eps, **kwargs) # RLS_action = generate_RLS_action(obs,q_function_cz,action,visited_state_rule_value, # visited_state_rule_tree,visited_state_RL_value, # visited_state_RL_tree,is_training) RLS_action = 0 env_action = RLS_action reset = False new_obs, rew, done, _ = env.step(env_action) ########### Record data in trajectory buffer and local file, but not in replay buffer ########### trajectory_buffer.append((obs, action, float(rew), new_obs, float(done))) # Store transition in the replay buffer. # replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew # safe driving is 1, collision is 0 while len(trajectory_buffer)>10: # if safe driving for 10(can be changed) steps, the state is regarded as safe obs_left, action_left, rew_left, new_obs_left, done_left = trajectory_buffer.popleft() # save this state in local replay buffer file if save_new_data_replay_buffer: recorded_data = _wrap_data(obs_left, action_left, rew_left, new_obs_left, done_left) recorded_replay_buffer_outfile.write(recorded_replay_buffer_format % tuple(recorded_data)) # put this state in replay buffer replay_buffer.add(obs_left[0], action_left, float(rew_left), new_obs_left[0], float(done_left)) action_to_record = action_left r_to_record = rew_left obs_to_record = obs_left # save this state in rule-based or RL-based visited state if action_left == 0: if save_new_data_rule: visited_state_rule_value.append([action_to_record,r_to_record]) visited_state_rule_tree.insert(visited_state_rule_counter, tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0])) visited_state_rule_outfile.write(visited_state_format % tuple(obs_to_record[0])) visited_value_rule_outfile.write(visited_value_format % tuple([action_to_record,r_to_record])) visited_state_rule_counter += 1 else: if save_new_data_RL: visited_state_RL_value.append([action_to_record,r_to_record]) visited_state_RL_tree.insert(visited_state_RL_counter, tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0])) visited_state_RL_outfile.write(visited_state_format % tuple(obs_to_record[0])) visited_value_RL_outfile.write(visited_value_format % tuple([action_to_record,r_to_record])) visited_state_RL_counter += 1 ################# Record data end ######################## if done: """ Get collision or out of multilane map """ ####### Record the trajectory data and add data in replay buffer ######### _, _, rew_right, _, _ = trajectory_buffer[-1] while len(trajectory_buffer)>0: obs_left, action_left, rew_left, new_obs_left, done_left = trajectory_buffer.popleft() action_to_record = action_left r_to_record = (rew_right-rew_left)*gamma**len(trajectory_buffer) + rew_left # record in local replay buffer file if save_new_data_replay_buffer: obs_to_record = obs_left recorded_data = _wrap_data(obs_left, action_left, r_to_record, new_obs_left, done_left) recorded_replay_buffer_outfile.write(recorded_replay_buffer_format % tuple(recorded_data)) # record in replay buffer for trainning replay_buffer.add(obs_left[0], action_left, float(r_to_record), new_obs_left[0], float(done_left)) # save visited rule/RL state data in local file if action_left == 0: if save_new_data_rule: visited_state_rule_value.append([action_to_record,r_to_record]) visited_state_rule_tree.insert(visited_state_rule_counter, tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0])) visited_state_rule_outfile.write(visited_state_format % tuple(obs_to_record[0])) visited_value_rule_outfile.write(visited_value_format % tuple([action_to_record,r_to_record])) visited_state_rule_counter += 1 else: if save_new_data_RL: visited_state_RL_value.append([action_to_record,r_to_record]) visited_state_RL_tree.insert(visited_state_RL_counter, tuple((obs_to_record-visited_state_dist).tolist()[0]+(obs_to_record+visited_state_dist).tolist()[0])) visited_state_RL_outfile.write(visited_state_format % tuple(obs_to_record[0])) visited_value_RL_outfile.write(visited_value_format % tuple([action_to_record,r_to_record])) visited_state_RL_counter += 1 ####### Recorded ##### obs = env.reset() episode_rewards.append(0.0) reset = True ############### Trainning Part Start ##################### if not is_training: # don't need to train the model continue if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward rew_str = str(mean_100ep_reward) path = osp.expanduser("~/models/carlaok_checkpoint/"+saved_name+"_"+rew_str) act.save(path) #### close the file #### visited_state_rule_outfile.close() visited_value_rule_outfile.close() recorded_replay_buffer_outfile.close() if not is_training: testing_record_outfile.close() #### close the file ### if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act