def save(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_state(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)
def learn(env, q_func, lr=5e-4, lr_decay_factor = 0.99, lr_growth_factor = 1.01, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, epoch_steps=20000, gpu_memory=1.0, double_q=False, scope="deepq", save_dir='.', nb_test_steps=10000, test_eps=0.05, render=False, map_name=None, num_targets=1 ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines0/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = gpu_memory config.gpu_options.polling_inactive_delay_msecs = 25 sess = tf.Session(config=config) sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return BatchInput(observation_space_shape, name=name) act, act_greedy, q_values, train, update_target, lr_decay_op, lr_growth_op, _ = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer_f=tf.train.AdamOptimizer, gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, double_q = bool(double_q), scope=scope, test_eps=test_eps, learning_rate = lr, learning_rate_decay_factor = lr_decay_factor, learning_rate_growth_factor = lr_growth_factor, ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None timelimit_env = env while( not hasattr(timelimit_env, '_elapsed_steps')): timelimit_env = timelimit_env.env if timelimit_env.env.spec: env_id = timelimit_env.env.spec.id else: env_id = timelimit_env.env.id obs = env.reset() reset = True num_eps = 0 #recording records = { 'loss':[], 'online_reward':[], 'test_reward':[], 'eval_value':[], 'learning_rate':[], 'q_vals':[], 'time':[]} with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_state(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True ep_losses, ep_qs, losses, qs = [], [], [], [] checkpt_loss = [] curr_lr = lr s_time = time.time() print("===== LEARNING STARTS =====") for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # Store transition in the replay buffer. if timelimit_env._elapsed_steps < timelimit_env._max_episode_steps: replay_buffer.add(obs, action, rew, new_obs, float(done)) else: replay_buffer.add(obs, action, rew, new_obs, float(not done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() reset = True num_eps += 1 episode_rewards.append(0.0) if losses: ep_losses.append(np.mean(losses)) ep_qs.append(np.mean(qs)) losses = [] qs = [] if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors, curr_lr, loss = train(obses_t, actions, rewards, obses_tp1, dones, weights) q_values_t = q_values(obses_t) losses.append(loss) qs.append(np.mean(q_values_t)) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if render: env.render(traj_num=num_eps) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if (t+1) % (epoch_steps/2) == 0 and (t+1) > learning_starts: if ep_losses: mean_loss = np.float16(np.mean(ep_losses)) if len(checkpt_loss) > 2 and mean_loss > np.float16(max(checkpt_loss[-3:])) and lr_decay_factor < 1.0: sess.run(lr_decay_op) print("Learning rate decayed due to an increase in loss: %.4f -> %.4f"%(np.float16(max(checkpt_loss[-3:])),mean_loss)) elif len(checkpt_loss) > 2 and mean_loss < np.float16(min(checkpt_loss[-3:])) and lr_growth_factor > 1.0: sess.run(lr_growth_op) print("Learning rate grown due to a decrease in loss: %.4f -> %.4f"%( np.float16(min(checkpt_loss[-3:])),mean_loss)) checkpt_loss.append(mean_loss) if (t+1) % epoch_steps == 0 and (t+1) > learning_starts: records['time'].append(time.time() - s_time) test_reward, eval_value = test(env_id, act_greedy, nb_test_steps=nb_test_steps, map_name=map_name, num_targets=num_targets) records['test_reward'].append(test_reward) records['eval_value'].append(eval_value) records['loss'].append(np.mean(ep_losses)) records['q_vals'].append(np.mean(ep_qs)) records['online_reward'].append(round(np.mean(episode_rewards[-101:-1]), 1)) records['learning_rate'].append(curr_lr) pickle.dump(records, open(os.path.join(save_dir,"records.pkl"),"wb")) print("==== EPOCH %d ==="%((t+1)/epoch_steps)) print(tabulate([[k,v[-1]] for (k,v) in records.items()])) s_time = time.time() if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and (t+1) > learning_starts and num_episodes > 100 and (t+1) % checkpoint_freq == 0): print("Saving model to model_%d.pkl"%(t+1)) act.save(os.path.join(save_dir,"model_"+str(t+1)+".pkl")) if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_state(model_file) return act, records
def learn( env, q_func, lr=5e-4, lr_decay_factor=0.99, lr_growth_factor=1.01, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=0.9, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, callback=None, varTH=1e-05, noise=0.0, epoch_steps=20000, alg='adfq', gpu_memory=1.0, act_policy='egreedy', save_dir='.', nb_test_steps=10000, scope='deepadfq', test_eps=0.05, init_t=0, render=False, map_name=None, num_targets=1, im_size=50, ): """Train a deepadfq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. varTH : variance threshold noise : noise for stochastic cases alg : 'adfq' or 'adfq-v2' gpu_memory : a fraction of a gpu memory when running multiple programs in the same gpu act_policy : action policy, 'egreedy' or 'bayesian' save_dir : path for saving results nb_test_steps : step bound in evaluation Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines0/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = gpu_memory config.gpu_options.polling_inactive_delay_msecs = 25 sess = tf.Session(config=config) sess.__enter__() num_actions = env.action_space.n varTH = np.float32(varTH) adfq_func = posterior_adfq if alg == 'adfq' else posterior_adfq_v2 # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph # observation_space_shape = env.observation_space.shape observation_space_shape = env.observation_space.shape def make_obs_ph(name): return BatchInput((im_size * im_size + observation_space_shape[0], ), name=name) act, act_test, q_target_vals, train, update_target, lr_decay_op, lr_growth_op = build_graph.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer_f=tf.train.AdamOptimizer, gamma=gamma, grad_norm_clipping=10, varTH=varTH, act_policy=act_policy, scope=scope, test_eps=test_eps, learning_rate=lr, learning_rate_decay_factor=lr_decay_factor, learning_rate_growth_factor=lr_growth_factor, ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None timelimit_env = env while (not hasattr(timelimit_env, '_elapsed_steps')): timelimit_env = timelimit_env.env if timelimit_env.env.spec: env_id = timelimit_env.env.spec.id else: env_id = timelimit_env.env.id obs = env.reset() reset = True num_eps = 0 # recording records = { 'q_mean': [], 'q_sd': [], 'loss': [], 'online_reward': [], 'test_reward': [], 'learning_rate': [], 'time': [], 'eval_value': [] } with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_saved = False model_file = os.path.join(td, "model") if tf.train.latest_checkpoint(td) is not None: load_state(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True learning_starts += init_t ep_losses, ep_means, ep_sds, losses, means, sds = [], [], [], [], [], [] ep_mean_err, ep_sd_err, mean_errs, sd_errs = [], [], [], [] checkpt_loss = [] curr_lr = lr s_time = time.time() print("===== LEARNING STARTS =====") for t in range(init_t, max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} update_eps = exploration.value(t) action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # Store transition in the replay buffer. if timelimit_env._elapsed_steps < timelimit_env._max_episode_steps: replay_buffer.add(obs, action, rew, new_obs, float(done)) else: replay_buffer.add(obs, action, rew, new_obs, float(not done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() reset = True num_eps += 1 episode_rewards.append(0.0) if losses: ep_losses.append(np.mean(losses)) ep_means.append(np.mean(means)) ep_sds.append(np.mean(sds)) losses, means, sds = [], [], [] ep_mean_err.append(np.mean(mean_errs)) ep_sd_err.append(np.mean(sd_errs)) mean_errs, sd_errs = [], [] if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None stats_t = q_target_vals(obses_t)[0] stats_tp1 = q_target_vals(obses_tp1)[0] ind = np.arange(batch_size) mean_t = stats_t[ind, actions.astype(int)] sd_t = np.exp(-stats_t[ind, actions.astype(int) + num_actions]) mean_tp1 = stats_tp1[:, :num_actions] sd_tp1 = np.exp(-stats_tp1[:, num_actions:]) var_t = np.maximum(varTH, np.square(sd_t)) var_tp1 = np.maximum(varTH, np.square(sd_tp1)) target_mean, target_var, _ = adfq_func(mean_tp1, var_tp1, mean_t, var_t, rewards, gamma, terminal=dones, asymptotic=False, batch=True, noise=noise, varTH=varTH) target_mean = np.reshape(target_mean, (-1)) target_sd = np.reshape(np.sqrt(target_var), (-1)) loss, m_err, s_err, curr_lr = train(obses_t, actions, target_mean, target_sd, weights) losses.append(loss) means.append(np.mean(mean_tp1)) sds.append(np.mean(sd_tp1)) mean_errs.append(np.mean(np.abs(m_err))) sd_errs.append(np.mean(np.abs(s_err))) if prioritized_replay: new_priorities = np.abs(m_err) + np.abs( s_err) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if render: env.render(traj_num=num_eps) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if (t + 1) % (epoch_steps / 2) == 0 and (t + 1) > learning_starts: if ep_losses: mean_loss = np.float16(np.mean(ep_losses)) if len(checkpt_loss) > 2 and mean_loss > np.float16( max(checkpt_loss[-3:])) and lr_decay_factor < 1.0: sess.run(lr_decay_op) print( "Learning rate decayed due to an increase in loss: %.4f -> %.4f" % (np.float16(max(checkpt_loss[-3:])), mean_loss)) elif len(checkpt_loss) > 2 and mean_loss < np.float16( min(checkpt_loss[-3:])) and lr_growth_factor > 1.0: sess.run(lr_growth_op) print( "Learning rate grown due to a decrease in loss: %.4f -> %.4f" % (np.float16(min(checkpt_loss[-3:])), mean_loss)) checkpt_loss.append(mean_loss) if (t + 1) % epoch_steps == 0 and (t + 1) > learning_starts: records['time'].append(time.time() - s_time) test_reward, eval_value = test(env_id, act_test, nb_test_steps=nb_test_steps, map_name=map_name, num_targets=num_targets, im_size=im_size) records['test_reward'].append(test_reward) records['eval_value'].append(eval_value) records['q_mean'].append(np.mean(ep_means)) records['q_sd'].append(np.mean(ep_sds)) records['loss'].append(np.mean(ep_losses)) records['online_reward'].append( round(np.mean(episode_rewards[-101:-1]), 1)) records['learning_rate'].append(curr_lr) pickle.dump(records, open(os.path.join(save_dir, "records.pkl"), "wb")) print("==== EPOCH %d ===" % ((t + 1) / epoch_steps)) print(tabulate([[k, v[-1]] for (k, v) in records.items()])) s_time = time.time() if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.record_tabular("averaged loss", np.mean(ep_losses[-print_freq:])) logger.record_tabular("averaged output mean", np.mean(ep_means[-print_freq:])) logger.record_tabular("averaged output sd", np.mean(ep_sds[-print_freq:])) logger.record_tabular("averaged error mean", np.mean(ep_mean_err[-print_freq:])) logger.record_tabular("averaged error sds", np.mean(ep_sd_err[-print_freq:])) logger.record_tabular("learning rate", curr_lr) logger.dump_tabular() if (checkpoint_freq is not None and (t + 1) > learning_starts and (t + 1) % checkpoint_freq == 0): #num_episodes > 100 and print("Saving model to model_%d.pkl" % (t + 1)) act.save(os.path.join(save_dir, "model_" + str(t + 1) + ".pkl")) if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_state(model_file) return act, records
def learn( env, q_func, lr=5e-4, lr_decay_factor=0.99, lr_growth_factor=1.01, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=0.9, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, callback=None, scope='deepadfq', alg='adfq', sdMin=1e-5, sdMax=1e5, noise=0.0, act_policy='egreedy', epoch_steps=20000, eval_logger=None, save_dir='.', test_eps=0.05, init_t=0, gpu_memory=1.0, render=False, **kwargs, ): """Train a deepadfq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: float update the target network every `target_network_update_freq` steps. If it is less than 1, it performs the soft target network update with the given rate. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. scope : str scope of the network. alg : str 'adfq' or 'adfq-v2'. sdMin, sdMix : float The minimum and maximum values for the standard deviations. noise : flot noise for stochastic cases. act_policy : str action policy, 'egreedy' or 'bayesian'. epoch_step : int the number of steps per epoch. eval_logger : Logger() the Logger() class object under deep_adfq folder. save_dir : str path for saving results. test_eps : float epsilon of the epsilon greedy action policy during testing. init_t : int an initial learning step if you start training from a pre-trained model. gpu_memory : float a fraction of a gpu memory when running multiple programs in the same gpu. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines0/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model config = tf.compat.v1.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = gpu_memory config.gpu_options.polling_inactive_delay_msecs = 25 sess = tf.compat.v1.Session(config=config) sess.__enter__() num_actions = env.action_space.n adfq_func = posterior_adfq if alg == 'adfq' else posterior_adfq_v2 # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph # observation_space_shape = env.observation_space.shape observation_space_shape = env.observation_space.shape def make_obs_ph(name): return BatchInput(observation_space_shape, name=name) target_network_update_rate = np.minimum(target_network_update_freq, 1.0) target_network_update_freq = np.maximum(target_network_update_freq, 1.0) act, act_test, q_target_vals, train, update_target, lr_decay_op, lr_growth_op = build_graph.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=num_actions, optimizer_f=tf.compat.v1.train.AdamOptimizer, grad_norm_clipping=10, sdMin=sdMin, sdMax=sdMax, act_policy=act_policy, scope=scope, test_eps=test_eps, lr_init=lr, lr_decay_factor=lr_decay_factor, lr_growth_factor=lr_growth_factor, reuse=tf.compat.v1.AUTO_REUSE, tau=target_network_update_rate, ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) file_writer = tf.compat.v1.summary.FileWriter(save_dir, sess.graph) U.initialize() update_target() saved_mean_reward = None timelimit_env = env while (not hasattr(timelimit_env, '_elapsed_steps')): timelimit_env = timelimit_env.env obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_saved = False model_file = os.path.join(td, "model") if tf.train.latest_checkpoint(td) is not None: load_state(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True learning_starts += init_t checkpt_loss = [] eval_logger.log_epoch(act_test) for t in range(init_t, max_timesteps): if callback is not None and callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs_act = {} update_eps = exploration.value(t) action = act(np.array(obs)[None], update_eps=update_eps, **kwargs_act)[0] env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # Store transition in the replay buffer. if timelimit_env._elapsed_steps < timelimit_env._max_episode_steps: replay_buffer.add(obs, action, rew, new_obs, float(done)) else: replay_buffer.add(obs, action, rew, new_obs, float(not done)) obs = new_obs eval_logger.log_reward(rew) if done: obs = env.reset() reset = True eval_logger.log_ep(info) if t > learning_starts and (t + 1) % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None stats_t = q_target_vals(obses_t)[0] stats_tp1 = q_target_vals(obses_tp1)[0] ind = np.arange(batch_size) mean_t = stats_t[ind, actions.astype(int)] sd_t = np.exp(-np.clip( stats_t[ind, actions.astype(int) + num_actions], -np.log(sdMax), -np.log(sdMin))) mean_tp1 = stats_tp1[:, :num_actions] sd_tp1 = np.exp(-np.clip(stats_tp1[:, num_actions:], -np.log(sdMax), -np.log(sdMin))) target_mean, target_var, _ = adfq_func(mean_tp1, np.square(sd_tp1), mean_t, np.square(sd_t), rewards, gamma, terminal=dones, asymptotic=False, batch=True, noise=noise, varTH=sdMin * sdMin) target_mean = np.reshape(target_mean, (-1)) target_sd = np.reshape(np.sqrt(target_var), (-1)) loss, m_err, s_err, summary = train(obses_t, actions, target_mean, target_sd, weights) file_writer.add_summary(summary, t) eval_logger.log_step(loss=loss) if prioritized_replay: new_priorities = np.abs(m_err) + np.abs( s_err) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if render: env.render() if t > learning_starts and (t + 1) % target_network_update_freq == 0: # Update target network periodically. update_target() if (t + 1) % epoch_steps == 0: eval_logger.log_epoch(act_test) if (checkpoint_freq is not None and t > learning_starts and (t + 1) % checkpoint_freq == 0 and eval_logger.get_num_episode() > 10): mean_loss = np.float16(np.mean(eval_logger.ep_history['loss'])) if len(checkpt_loss) > 2 and mean_loss > np.float16( max(checkpt_loss[-3:])) and lr_decay_factor < 1.0: sess.run(lr_decay_op) print( "Learning rate decayed due to an increase in loss: %.4f -> %.4f" % (np.float16(max(checkpt_loss[-3:])), mean_loss)) elif len(checkpt_loss) > 2 and mean_loss < np.float16( min(checkpt_loss[-3:])) and lr_growth_factor > 1.0: sess.run(lr_growth_op) print( "Learning rate grown due to a decrease in loss: %.4f -> %.4f" % (np.float16(min(checkpt_loss[-3:])), mean_loss)) checkpt_loss.append(mean_loss) # print("Saving model to model_%d.pkl"%(t+1)) # act.save(os.path.join(save_dir,"model_"+str(t+1)+".pkl")) mean_100ep_reward = eval_logger.get_100ep_reward() if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_state(model_file) eval_logger.finish(max_timesteps, epoch_steps, learning_starts) return act