Exemple #1
0
    def evaluate(self, seq_data, head_i=0, loss='poisson'):
        """ Evaluate model on SeqDataset. """
        # choose model
        if self.ensemble is None:
            model = self.models[head_i]
        else:
            model = self.ensemble

        # compile with dense metrics
        num_targets = self.model.output_shape[-1]

        if loss == 'bce':
            model.compile(optimizer=tf.keras.optimizers.SGD(),
                          loss=loss,
                          metrics=[
                              metrics.SeqAUC(curve='ROC', summarize=False),
                              metrics.SeqAUC(curve='PR', summarize=False)
                          ])
        else:
            model.compile(optimizer=tf.keras.optimizers.SGD(),
                          loss=loss,
                          metrics=[
                              metrics.PearsonR(num_targets, summarize=False),
                              metrics.R2(num_targets, summarize=False)
                          ])

        # evaluate
        return model.evaluate(seq_data.dataset)
Exemple #2
0
 def compile(self, seqnn_model):
   for model in seqnn_model.models:
     if self.loss == 'bce':
       model_metrics = [metrics.SeqAUC(curve='ROC'), metrics.SeqAUC(curve='PR')]
     else:
       num_targets = model.output_shape[-1]
       model_metrics = [metrics.PearsonR(num_targets), metrics.R2(num_targets)]
     
     model.compile(loss=self.loss_fn,
                   optimizer=self.optimizer,
                   metrics=model_metrics)
   self.compiled = True