dataTrain, dataTest = data[train_index], data[test_index] dTrain = bf.onlySampleSize(dataTrain, 1) dTest = bf.onlySampleSize(dataTest, 1) acc_xTrain = [] acc_yTrain = [] aud_xTrain = [] aud_yTrain = [] xTrain = [] yTrain = [] for d in dTrain: acc_xTrain.append(d[0 : numTotalAcc]) aud_xTrain.append(d[numTotalAcc : numTotalAcc + numTotalAud]) xTrain.append(d[0 : numTotalAcc + numTotalAud]) acc_yTrain.append(bf.oneHotLabel(int(d[-1]), numLabel)) aud_yTrain.append(bf.oneHotLabel(int(d[-1]), numLabel)) yTrain.append(bf.oneHotLabel(int(d[-1]), numLabel)) print('acc_xTrain : ', len(acc_xTrain)) print('aud_xTrain : ', len(aud_xTrain)) acc_xTest = [] acc_yTest = [] aud_xTest = [] aud_yTest = [] for d in dTest: acc_xTest.append(d[0 : numTotalAcc]) aud_xTest.append(d[numTotalAcc : numTotalAcc + numTotalAud]) acc_yTest.append(bf.oneHotLabel(int(d[-1]), numLabel)) aud_yTest.append(bf.oneHotLabel(int(d[-1]), numLabel))
kf.get_n_splits(data) data = np.array(data) for train_index, test_index in kf.split(data): dataTrain, dataTest = data[train_index], data[test_index] dTrain = bf.onlySampleSize(dataTrain, 1) xTrain = [] yTrain = [] for d in dTrain: xTrain.append(d[0:300]) #print("yTrain : ",(int(d[300]))) #print("d[0:301 : " , d[0:301]) #print("d : ",(d[300])) yTrain.append(bf.oneHotLabel(int(d[300]), numLabel)) # on Imac the GPU is not working. so with tf.device('/gpu:3'): inputX = tf.placeholder(tf.float32, [None, 300]) outputY = tf.placeholder(tf.float32, [None, 10]) #1 * 100 * 3 W_conv1 = weight_variable([3, 1, 1, 9]) #width, height, channel input, channel output b_conv1 = bias_variable([9]) x_image = tf.reshape(inputX, [-1, 100, 3, 1]) # -1, width, height, channel) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) #1 * 150 * 9 W_conv2 = weight_variable([3, 1, 9, 18]) b_conv2 = bias_variable([18])