def submodel_vp_colored(m,sm,rotated=None): """ m is the full model with the VP's already calculated sm is the submodel that we will save. it is modified and likely otherwise unusable - be careful """ if( rotated == None ): vpcoloredmodel = Model('vp colored atoms',m.lx,m.ly,m.lz,sm.atoms) else: vpcoloredmodel = Model('vp colored atoms',m.lx,m.ly,m.lz,rotated.atoms) for i,atom in enumerate(vpcoloredmodel.atoms): atomi = m.atoms[m.atoms.index(sm.atoms[i])] if(atomi.vp.type == 'Full-icosahedra'): sm.atoms[i].vp = atomi.vp.copy() if( rotated != None ): rotated.atoms[i].vp = atomi.vp.copy() atom.z = 1 # Dark blue elif(atomi.vp.type == 'Icosahedra-like'): sm.atoms[i].vp = atomi.vp.copy() if( rotated != None ): rotated.atoms[i].vp = atomi.vp.copy() atom.z = 2 # Light blue elif(atomi.vp.type == 'Mixed'): sm.atoms[i].vp = atomi.vp.copy() if( rotated != None ): rotated.atoms[i].vp = atomi.vp.copy() atom.z = 3 # Orange elif(atomi.vp.type == 'Crystal-like'): sm.atoms[i].vp = atomi.vp.copy() if( rotated != None ): rotated.atoms[i].vp = atomi.vp.copy() atom.z = 4 # Red elif(atomi.vp.type == 'Undef'): sm.atoms[i].vp = atomi.vp.copy() if( rotated != None ): rotated.atoms[i].vp = atomi.vp.copy() atom.z = 5 # Grey vpcoloredmodel.write_real_xyz('vpcolored.xyz')
class Autoencoder: def __init__(self): self.config = Config() self.model = Model(self.config) self.model_dir = 'Psych209_AE' self.writer = tf.summary.FileWriter(self.model_dir) self.saver = tf.train.Saver(max_to_keep=200) self.global_step = 0 self.sess = tf.Session() self.num_epochs = 100 self.save_interval = 1000 self.print_interval = 100 def run(self): train, test = utils.load_data('Data/movie_lines.txt') embeddings = utils.load_embeddings() self.sess.run(tf.global_variables_initializer()) self.writer.add_graph(sess.graph) merged_summaries = tf.summary.merge_all() print 'Starting training...' for epoch in range(self.num_epochs): print '-----Epoch', epoch, '-----' batches = utils.get_batches(train, self.config.batch_size) start_time = datetime.datetime.now() for batch in tqdm(batches): ops, feed = self.model.train_step(batch, training=True) _, loss, summary = sess.run(ops + (merged_summaries, ), feed) self.writer.add_summary(summary, self.global_step) self.global_step += 1 # training status if self.global_step % self.print_interval == 0: perplexity = math.exp( float(loss)) if loss < 300 else float('inf') tqdm.write( "----- Step %d -- Loss %.2f -- Perplexity %.2f" % (self.global_step, loss, perplexity)) # run test periodically ops, feed = self.model.train_step(batch, training=False) _, loss, summary = sess.run(ops + (merged_summaries, ), feed) # save checkpoint if self.global_step % self.save_interval == 0: self.save_session(sess) end_time = datetime.datetime.now() print 'Epoch finish in ', end_time - start_time, 'ms' def save_session(self, sess): print 'Saving session at checkpoint', self.global_step name = self.model_dir + str(self.global_step) self.saver.save(sess, name) print 'Save complete with name', name
def __init__(self): self.config = Config() self.model = Model(self.config) self.model_dir = 'Psych209_AE' self.writer = tf.summary.FileWriter(self.model_dir) self.saver = tf.train.Saver(max_to_keep=200) self.global_step = 0 self.sess = tf.Session() self.num_epochs = 100 self.save_interval = 1000 self.print_interval = 100
def main(): """ Columns that I should have: % atoms that are xtal-like (i.e. what % of all the xtal-like atoms are in this sub-model?) % atoms that are ico-like % atoms that are mixed % atoms that are undefined Can you see planes? Is the spot visible in the sub-model's FT? What is the ratio of the max intensity of the spot in the original FT / that in the sub-model's FT? (Do this on a per-atom basis to account for the different number of atoms.)""" # paramfile, jobid, original ft, main ft direc, VP categories paramfile # It is necessary to have a "spot_ft" directory and a "submodels" directory # in the main ft directory for this to work. paramfile = sys.argv[1] # Paramfile with open(paramfile) as f: params = f.readlines() params = [line.strip() for line in params] modelfile = params[0] num_spots = int(params[1]) jobid = sys.argv[2] # jobid orig_ft = sys.argv[3] # original ft main_direc = sys.argv[4] # spot ft direc spot_ft_direc = main_direc+'/spot_fts/' spot_fts = sorted(os.listdir(spot_ft_direc)) spot_fts = [spot_ft_direc+line for line in spot_fts] submodel_direc = main_direc+'/submodels/' vp_paramfile = sys.argv[5] # VP paramfile for categorizing # Do the VP analysis first, it's faster. m = Model(modelfile) vp_dict = load_param_file(vp_paramfile) vp_dict['Undef'] = [] cutoff = {} cutoff[(40,40)] = 3.6 cutoff[(13,29)] = 3.6 cutoff[(29,13)] = 3.6 cutoff[(40,13)] = 3.6 cutoff[(13,40)] = 3.6 cutoff[(29,40)] = 3.6 cutoff[(40,29)] = 3.6 cutoff[(13,13)] = 3.6 cutoff[(29,29)] = 3.6 voronoi_3d(m,cutoff) set_atom_vp_types(m,vp_dict) vp_models = [] for i,vptype in enumerate(vp_dict): vp_models.append( Model('{0} atoms'.format(vptype),m.lx,m.ly,m.lz, [atom for atom in m.atoms if atom.vp.type == vptype]) ) vp_models[i].write_real_xyz('{0}.real.xyz'.format(vptype)) vpcoloredmodel = Model('vp colored atoms',m.lx,m.ly,m.lz, m.atoms) for atom in vpcoloredmodel.atoms: if(atom.vp.type == 'Full-icosahedra'): atom.z = 1 elif(atom.vp.type == 'Icosahedra-like'): atom.z = 2 elif(atom.vp.type == 'Mixed'): atom.z = 3 elif(atom.vp.type == 'Crystal-like'): atom.z = 4 elif(atom.vp.type == 'Undef'): atom.z = 5 vpcoloredmodel.write_our_xyz('vpcolored.xyz') #sm = Model(sys.argv[6]) #rm = Model(sys.argv[7]) #submodel_vp_colored(m,sm,rm) #vor_stats(sm) #vor_stats(rm) atom_dict_m = generate_atom_dict(m) smtable = {} submodelfiles = os.listdir(submodel_direc) submodelfiles = [smf for smf in submodelfiles if('real' not in smf)] submodelfiles = [smf for smf in submodelfiles if('cif' not in smf)] submodelfiles = [submodel_direc+smf for smf in submodelfiles] submodelfiles.sort() for i,submodelfile in enumerate(submodelfiles): sm = Model(submodelfile) for atom in sm.atoms: if( atom in m.atoms ): atom.vp = m.atoms[m.atoms.index(atom)].vp.copy() smtable[submodelfile] = {} for vptype in vp_dict: atom_dict_sm = generate_atom_dict(sm) #smtable[submodelfile][vptype] = len(atom_dict_sm[vptype]) / float(len(atom_dict_m[vptype])) smtable[submodelfile][vptype] = len(atom_dict_sm[vptype]) / float(sm.natoms) #for smf in submodelfiles: # typedict = smtable[smf] # print(smf) # for vptype,ratio in typedict.iteritems(): # print(" {1}% {0}".format(vptype,round(100*ratio))) # print(" Ratio of ico-like / xtal-like: {0}".format(typedict['Icosahedra-like']/typedict['Crystal-like'])) # print('') print_table(smtable) #return # Calculate the ratio of spot intensitites spot_ints = [] orig_intensities = read_intensity_file(orig_ft) for i in range(0,num_spots): for intensityfile in spot_fts: id = get_spot_id(intensityfile) if(i == id): print("Intensity file: {0} => i={1}".format(intensityfile,id)) # Find and generate corresponding sub-model # Need this to rescale by number of atoms # smf will stay at the correct string for appending to table for smf in submodelfiles: if(get_spot_id(smf) == id): sm = Model(smf) break j = id*7 +2 x0,y0,z0 = tuple([float(x) for x in params[j+1].split()]) sx,sy,sz = tuple([float(x) for x in params[j+2].split()]) cxy,cxz,cyz = tuple([float(x) for x in params[j+3].split()]) xi,xf,xc = tuple([float(x)*2 for x in params[j+4].split()][:3]) yi,yf,yc = tuple([float(x)*2 for x in params[j+5].split()][:3]) zi,zf,zc = tuple([float(x)*2 for x in params[j+6].split()][:3]) ft_intensities = read_intensity_file(intensityfile) maxoi = 0.0 maxi = 0.0 for x in range(xi-1,xf): for y in range(yi-1,yf): for z in range(zi-1,zf): #print(x,y,z,orig_intensities[x][y][z]) if( ft_intensities[x][y][z] > maxi ): maxi = ft_intensities[x][y][z] print(orig_intensities[x][y][z],x,y,z) if( orig_intensities[x][y][z] > maxoi ): maxoi = orig_intensities[x][y][z] print(" Unscaled intensity ratio: {0}/{1}={2}".format(maxi,maxoi,maxi/maxoi)) smtable[smf]['UIR'] = maxi/maxoi smtable[smf]['MUIR'] = sm.natoms/float(m.natoms) maxoi /= m.natoms # rescale by number of atoms (ft is lineary scaling) maxi /= sm.natoms # rescale by number of atoms (ft is lineary scaling) smtable[smf]['IR'] = maxi/maxoi print(" Intensity ratio: {0}/{1}={2}".format(maxi,maxoi,smtable[smf]['IR'])) spot_ints.append((id,maxi,maxoi,maxi/maxoi)) print(spot_ints) print_table(smtable) print_table(smtable) return # sys.argv[1] should be the modelfile in the xyz format # sys.argv[2] should be the cutoff desired modelfile = sys.argv[1] cutoff = float(sys.argv[2]) ag = AtomGraph(modelfile,cutoff) model = Model(modelfile) model.generate_neighbors(cutoff) submodelfile = sys.argv[3] mixedmodel = Model('Mixed atoms',model.lx,model.ly,model.lz, [atom for atom in ag.model.atoms if atom.vp.type == 'Mixed']) icolikemodel = Model('Ico-like atoms',model.lx,model.ly,model.lz, [atom for atom in ag.model.atoms if(atom.vp.type == 'Icosahedra-like' or atom.vp.type == 'Full-icosahedra')]) fullicomodel = Model('Full-icosahedra atoms',model.lx,model.ly,model.lz, [atom for atom in ag.model.atoms if atom.vp.type == 'Full-icosahedra']) xtalmodel = Model('Xtal-like atoms',model.lx,model.ly,model.lz, [atom for atom in ag.model.atoms if atom.vp.type == 'Crystal-like']) undefmodel = Model('Undef atoms',model.lx,model.ly,model.lz, [atom for atom in ag.model.atoms if atom.vp.type == 'Undef']) #mixedmodel.write_cif('mixed.cif') #mixedmodel.write_our_xyz('mixed.xyz') #icolikemodel.write_cif('icolike.cif') #icolikemodel.write_our_xyz('icolike.xyz') #fullicomodel.write_cif('fullico.cif') #fullicomodel.write_our_xyz('fullico.xyz') #xtalmodel.write_cif('xtal.cif') #xtalmodel.write_our_xyz('xtal.xyz') #undefmodel.write_cif('undef.cif') #undefmodel.write_our_xyz('undef.xyz') icomixedmodel = Model('ico+mix atoms',model.lx,model.ly,model.lz, mixedmodel.atoms + icolikemodel.atoms) #mixedmodel.write_cif('icomixed.cif') #mixedmodel.write_our_xyz('icomixed.xyz') vpcoloredmodel = Model('vp colored atoms',model.lx,model.ly,model.lz, ag.model.atoms) for atom in vpcoloredmodel.atoms: if(atom.vp.type == 'Full-icosahedra'): atom.z = 1 elif(atom.vp.type == 'Icosahedra-like'): atom.z = 2 elif(atom.vp.type == 'Mixed'): atom.z = 3 elif(atom.vp.type == 'Crystal-like'): atom.z = 4 elif(atom.vp.type == 'Undef'): atom.z = 5 #vpcoloredmodel.write_cif('vpcolored.cif') #vpcoloredmodel.write_our_xyz('vpcolored.xyz') subvpcoloredmodel = Model(submodelfile) for atom in subvpcoloredmodel.atoms: atom.z = vpcoloredmodel.atoms[ag.model.atoms.index(atom)].z subvpcoloredmodel.write_cif('subvpcolored.cif') subvpcoloredmodel.write_our_xyz('subvpcolored.xyz') return golden = False #cluster_prefix = 'ico.t3.' #cluster_types = 'Icosahedra-like', 'Full-icosahedra' # Need this for final/further analysis #cluster_prefix = 'fi.t3.' #cluster_types = ['Full-icosahedra'] # Need this for final/further analysis cluster_prefix = 'xtal.t3.' cluster_types = 'Crystal-like' # Need this for final/further analysis #cluster_prefix = 'mix.t3' #cluster_types = ['Mixed'] # Need this for final/further analysis #cluster_prefix = 'undef.t3' #cluster_types = ['Undef'] # Need this for final/further analysis # Decide what time of clustering you want to do #clusters = ag.get_clusters_with_n_numneighs(cutoff,5,cluster_types) #Vertex #clusters = ag.get_vertex_sharing_clusters(cutoff,cluster_types) #Vertex #clusters = ag.get_edge_sharing_clusters(cutoff,cluster_types) #Edge #clusters = ag.get_face_sharing_clusters(cutoff,cluster_types) #Face clusters = ag.get_interpenetrating_atoms(cutoff,cluster_types) #Interpenetrating #clusters = ag.get_interpenetrating_clusters_with_neighs(cutoff,cluster_types) #Interpenetrating+neighs #clusters = ag.get_connected_clusters_with_neighs(cutoff, cluster_types) #Connected (vertex) + neighs #v,e,f,i = ag.vefi_sharing(cluster_types) #print("V: {0} E: {1} F: {2} I: {3}".format(int(v),int(e),int(f),int(i))) orig_clusters = clusters[:] # Print orig clusters j = 0 for i,cluster in enumerate(clusters): print("Orig cluster {0} contains {1} atoms.".format(i,len(cluster))) if(golden): for atom in cluster: if(atom.vp.type in cluster_types): atom.z = 0 # Save cluster files cluster_model = Model("Orig cluster {0} contains {1} atoms.".format(i,len(cluster)),model.lx, model.ly, model.lz, cluster) cluster_model.write_cif('{1}cluster{0}.cif'.format(i,cluster_prefix)) cluster_model.write_our_xyz('{1}cluster{0}.xyz'.format(i,cluster_prefix)) allclusters = [] for cluster in clusters: for atom in cluster: if(atom not in allclusters): allclusters.append(atom) #if(atom.vp.type in cluster_types): print(' {0}\t{1}'.format(atom,atom.vp.type)) allclusters = Model("All clusters.",model.lx, model.ly, model.lz, allclusters) allclusters.write_cif('{0}allclusters.cif'.format(cluster_prefix)) allclusters.write_our_xyz('{0}allclusters.xyz'.format(cluster_prefix)) print("{0}allclusters.cif and {0}allclusters.xyz contain {1} atoms.".format(cluster_prefix, allclusters.natoms)) if(not golden): x_cluster = [] for i,atom in enumerate(model.atoms): if atom not in allclusters.atoms: x_cluster.append(atom) x_cluster = Model("Opposite cluster of {0}".format(cluster_prefix),model.lx, model.ly, model.lz, x_cluster) x_cluster.write_cif('{0}opposite.cif'.format(cluster_prefix)) x_cluster.write_our_xyz('{0}opposite.xyz'.format(cluster_prefix)) print('{0}opposite.cif and {0}opposite.xyz contain {1} atoms.'.format(cluster_prefix, x_cluster.natoms)) if(False): # Further analysis cn = 0.0 for atom in model.atoms: cn += atom.cn cn /= model.natoms vpcn = 0.0 count = 0 for atom in ag.model.atoms: if( atom.vp.type in cluster_types ): vpcn += atom.cn count += 1 vpcn /= count natomsinVPclusters = allclusters.natoms # Number of atoms in VP clusters nVPatoms = count # Number of VP atoms numsepVPatoms = nVPatoms * vpcn # Number of atoms in VP clusters if all clusters were separated maxnumatoms = model.natoms # Max number of atoms in VP clusters if all clusters were separated but still within the model size print('Average CN is {0}'.format(cn)) print('Average CN of VP atoms is {0}'.format(vpcn)) print('# atoms in all clusters: {0}. # VP atoms * vpcn: {1}. # VP atoms: {2}'.format(natomsinVPclusters,numsepVPatoms,nVPatoms)) print('~ Number of VP that can fit in the model: {0}'.format(maxnumatoms/vpcn)) print('Ratio of: (# atoms involved in VP clusters)/(# atoms involved in VP clusters if all clusters were completely separated): {0}% <--- Therefore {1}% sharing.'.format(round(float(natomsinVPclusters)/(numsepVPatoms)*100.0,3),100.0-round(float(natomsinVPclusters)/(numsepVPatoms)*100.0,3))) print('Ratio of: (# atoms involved in VP clusters)/(# atoms involved in VP clusters if all clusters were separated as much as possible within the model): {0}% <--- Therefore {1}% sharing.'.format(round(float(natomsinVPclusters)/min(numsepVPatoms,maxnumatoms)*100.0,3),100.0-round(float(natomsinVPclusters)/min(numsepVPatoms,maxnumatoms)*100.0,3) if numsepVPatoms < maxnumatoms else round(float(natomsinVPclusters)/min(numsepVPatoms,maxnumatoms)*100.0,3))) vor_instance = Vor() vor_instance.runall(modelfile,cutoff) index = vor_instance.get_indexes() vor_instance.set_atom_vp_indexes(model) vp_dict = categorize_vor.load_param_file('/home/jjmaldonis/model_analysis/scripts/categorize_parameters_iso.txt') atom_dict = categorize_vor.generate_atom_dict(index,vp_dict) categorize_vor.set_atom_vp_types(model,vp_dict) # Count the number of common neighbors in each of the VP vp_atoms = [] for atom in model.atoms: if(atom.vp.type in cluster_types): vp_atoms.append(atom) common_neighs = 0.0 atom_pairs = [] for atomi in vp_atoms: for atomj in vp_atoms: if(atomi != atomj): if(atomi in atomj.neighs and [atomi,atomj] not in atom_pairs and [atomj,atomi] not in atom_pairs): common_neighs += 1 atom_pairs.append([atomi,atomj]) #if(atomj in atomi.neighs): common_neighs += 0.5 for n in atomi.neighs: if(n in atomj.neighs and [n,atomj] not in atom_pairs and [atomj,n] not in atom_pairs): common_neighs += 1 atom_pairs.append([n,atomj]) #for n in atomj.neighs: # if(n in atomi.neighs): common_neighs += 0.5 # Now common_neighs is the number of shared atoms #print(common_neighs) print('Percent shared based on common neighsbors: {0}'.format(100.0*common_neighs/natomsinVPclusters))