def test(load_model_weight=False): if load_model_weight: if cfg.model_weight_file != '': map_location = (lambda storage, loc: storage) sd = torch.load(cfg.model_weight_file, map_location=map_location) load_state_dict(model, sd) print('Loaded model weights from {}'.format(cfg.model_weight_file)) else: load_ckpt(modules_optims, cfg.ckpt_file) use_local_distance = (cfg.l_loss_weight > 0) \ and cfg.local_dist_own_hard_sample for test_set, name in zip(test_sets, test_set_names): test_set.set_feat_func(ExtractFeature(model_w, TVT)) print('\n=========> Test on dataset: {} <=========\n'.format(name)) test_set.eval( normalize_feat=cfg.normalize_feature, use_local_distance=use_local_distance)
def main(): cfg = Config() # Redirect logs to both console and file. if cfg.log_to_file: ReDirectSTD(cfg.stdout_file, 'stdout', False) ReDirectSTD(cfg.stderr_file, 'stderr', False) # Lazily create SummaryWriter writer = None TVT, TMO = set_devices(cfg.sys_device_ids) if cfg.seed is not None: set_seed(cfg.seed) # Dump the configurations to log. import pprint print('-' * 60) print('cfg.__dict__') pprint.pprint(cfg.__dict__) print('-' * 60) ########### # Dataset # ########### train_set = create_dataset(**cfg.train_set_kwargs) test_sets = [] test_set_names = [] if cfg.dataset == 'combined': for name in ['market1501', 'cuhk03', 'duke']: cfg.test_set_kwargs['name'] = name test_sets.append(create_dataset(**cfg.test_set_kwargs)) test_set_names.append(name) else: test_sets.append(create_dataset(**cfg.test_set_kwargs)) test_set_names.append(cfg.dataset) ########### # Models # ########### model = Model(local_conv_out_channels=cfg.local_conv_out_channels, num_classes=len(train_set.ids2labels)) # Model wrapper #model_w = DataParallel(model) ############################# # Criteria and Optimizers # ############################# id_criterion = SoftmaxEntropyLoss() id_criterion1 = nn.CrossEntropyLoss() g_tri_loss = TripletLoss(margin=cfg.global_margin) l_tri_loss = TripletLoss(margin=cfg.local_margin) center_loss = CenterLoss(num_classes=len(train_set.ids2labels), feat_dim=2048, use_gpu=True) d_input_size = 2048 d_hidden_size = 128 d_output_size = 4 d_learning_rate = 1e-4 sgd_momentum = 0.9 d_steps = 2 g_steps = 1 dfe, dre, ge = 0, 0, 0 d_real_data, d_fake_data, g_fake_data = None, None, None discriminator_activation_function = nn.Sigmoid() G = Generator(model) D = Discriminator(input_size=d_input_size, hidden_size=d_hidden_size, output_size=d_output_size, f=discriminator_activation_function) G_w = DataParallel(G) D_w = DataParallel(D) g_optimizer = optim.Adam(G.parameters(), lr=cfg.base_lr, weight_decay=cfg.weight_decay) d_optimizer = optim.SGD(D.parameters(), lr=d_learning_rate, momentum=sgd_momentum) optimizer_centloss = torch.optim.SGD(center_loss.parameters(), lr=0.001) # Bind them together just to save some codes in the following usage. modules_optims = [model, g_optimizer] ################################ # May Resume Models and Optims # ################################ if cfg.resume: resume_ep, scores = load_ckpt(modules_optims, cfg.ckpt_file) # May Transfer Models and Optims to Specified Device. Transferring optimizer # is to cope with the case when you load the checkpoint to a new device. TMO(modules_optims) ######## # Test # ######## def test(load_model_weight=False): if load_model_weight: if cfg.model_weight_file != '': map_location = (lambda storage, loc: storage) sd = torch.load(cfg.model_weight_file, map_location=map_location) load_state_dict(model, sd) print('Loaded model weights from {}'.format( cfg.model_weight_file)) else: load_ckpt(modules_optims, cfg.ckpt_file) use_local_distance = (cfg.l_loss_weight > 0) \ and cfg.local_dist_own_hard_sample for test_set, name in zip(test_sets, test_set_names): test_set.set_feat_func(ExtractFeature(G_w, TVT)) print('\n=========> Test on dataset: {} <=========\n'.format(name)) test_set.eval(normalize_feat=cfg.normalize_feature, use_local_distance=use_local_distance) if cfg.only_test: test(load_model_weight=True) return ############ # Training # ############ start_ep = resume_ep if cfg.resume else 0 for ep in range(start_ep, cfg.total_epochs): # Adjust Learning Rate if cfg.lr_decay_type == 'exp': adjust_lr_exp(g_optimizer, cfg.base_lr, ep + 1, cfg.total_epochs, cfg.exp_decay_at_epoch) if cfg.lr_decay_type == 'exp': adjust_lr_exp(optimizer_centloss, cfg.base_lr, ep + 1, cfg.total_epochs, cfg.exp_decay_at_epoch) else: adjust_lr_staircase(g_optimizer, cfg.base_lr, ep + 1, cfg.staircase_decay_at_epochs, cfg.staircase_decay_multiply_factor) adjust_lr_staircase(optimizer_centloss, cfg.base_lr, ep + 1, cfg.staircase_decay_at_epochs, cfg.staircase_decay_multiply_factor) may_set_mode(modules_optims, 'train') g_prec_meter = AverageMeter() g_m_meter = AverageMeter() g_dist_ap_meter = AverageMeter() g_dist_an_meter = AverageMeter() g_loss_meter = AverageMeter() l_prec_meter = AverageMeter() l_m_meter = AverageMeter() l_dist_ap_meter = AverageMeter() l_dist_an_meter = AverageMeter() l_loss_meter = AverageMeter() id_loss_meter = AverageMeter() sift_loss_meter = AverageMeter() c_loss_meter = AverageMeter() d_err_meter = AverageMeter() g_err_meter = AverageMeter() loss_meter = AverageMeter() ep_st = time.time() step = 0 epoch_done = False while not epoch_done: step += 1 step_st = time.time() ims, im_names, labels, mirrored, epoch_done = train_set.next_batch( ) ims_var = Variable(TVT(torch.from_numpy(ims).float())) labels_t = TVT(torch.from_numpy(labels).long()) labels_var = Variable(labels_t) global_feat, local_feat, logits = G_w(ims_var) sift_func = ExtractSift() sift = torch.from_numpy(sift_func(ims_var)).cuda() g_loss, p_inds, n_inds, g_dist_ap, g_dist_an, g_dist_mat = global_loss( g_tri_loss, global_feat, labels_t, normalize_feature=cfg.normalize_feature) if cfg.l_loss_weight == 0: l_loss = 0 elif cfg.local_dist_own_hard_sample: # Let local distance find its own hard samples. l_loss, l_dist_ap, l_dist_an, _ = local_loss( l_tri_loss, local_feat, None, None, labels_t, normalize_feature=cfg.normalize_feature) else: l_loss, l_dist_ap, l_dist_an = local_loss( l_tri_loss, local_feat, p_inds, n_inds, labels_t, normalize_feature=cfg.normalize_feature) id_loss = 0 if cfg.id_loss_weight > 0: id_loss = id_criterion1(logits, labels_var) sift_loss = 0 if cfg.sift_loss_weight > 0: sift_loss = torch.norm( normalize(global_feat, axis=-1) - normalize(sift, axis=-1)) c_loss = 0 if cfg.c_loss_weight > 0: c_loss = center_loss(normalize(global_feat, axis=-1), labels_var) ###########################################view classifier################################# batch_size = 48 view_real_label_list = [] view_fake_label_list = [] view_label_array = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype='float32') for m in range(batch_size): i = m % 4 label_real = view_label_array[i, :] label_fake = np.array([0.25, 0.25, 0.25, 0.25], dtype='float32') view_real_label_list.append(label_real) view_fake_label_list.append(label_fake) real_label = np.vstack(view_real_label_list) view_real_label = torch.from_numpy(real_label).cuda() fake_label = np.vstack(view_fake_label_list) view_fake_label = torch.from_numpy(fake_label).cuda() g_error = 0 if cfg.dg_loss_weight > 0: for d_index in range(d_steps): # 1. Train D on real+fake d_optimizer.zero_grad() d_data = global_feat d_decision = D_w(d_data) d_error = id_criterion(d_decision, view_real_label) # ones = true d_error.backward( retain_graph=True ) # compute/store gradients, but don't change params d_optimizer.step( ) # Only optimizes D's parameters; changes based on stored gradients from backward() # 2. Train G on D's response (but DO NOT train D on these labels) g_error = id_criterion( d_decision, view_fake_label) # Train G to pretend it's genuine loss = g_loss * cfg.g_loss_weight \ + l_loss * cfg.l_loss_weight \ + id_loss * cfg.id_loss_weight \ + sift_loss * cfg.sift_loss_weight \ + c_loss * cfg.c_loss_weight \ + g_error * cfg.dg_loss_weight g_optimizer.zero_grad() optimizer_centloss.zero_grad() loss.backward(retain_graph=True) g_optimizer.step() for param in center_loss.parameters(): param.grad.data *= (1 / cfg.c_loss_weight) optimizer_centloss.step() ############ # Step Log # ############ # precision g_prec = (g_dist_an > g_dist_ap).data.float().mean() # the proportion of triplets that satisfy margin g_m = (g_dist_an > g_dist_ap + cfg.global_margin).data.float().mean() g_d_ap = g_dist_ap.data.mean() g_d_an = g_dist_an.data.mean() g_prec_meter.update(g_prec) g_m_meter.update(g_m) g_dist_ap_meter.update(g_d_ap) g_dist_an_meter.update(g_d_an) g_loss_meter.update(to_scalar(g_loss)) if cfg.l_loss_weight > 0: # precision l_prec = (l_dist_an > l_dist_ap).data.float().mean() # the proportion of triplets that satisfy margin l_m = (l_dist_an > l_dist_ap + cfg.local_margin).data.float().mean() l_d_ap = l_dist_ap.data.mean() l_d_an = l_dist_an.data.mean() l_prec_meter.update(l_prec) l_m_meter.update(l_m) l_dist_ap_meter.update(l_d_ap) l_dist_an_meter.update(l_d_an) l_loss_meter.update(to_scalar(l_loss)) if cfg.id_loss_weight > 0: id_loss_meter.update(to_scalar(id_loss)) if cfg.sift_loss_weight > 0: sift_loss_meter.update(to_scalar(sift_loss)) if cfg.c_loss_weight > 0: c_loss_meter.update(to_scalar(c_loss)) if cfg.dg_loss_weight > 0: d_err_meter.update(to_scalar(d_error)) g_err_meter.update(to_scalar(g_error)) loss_meter.update(to_scalar(loss)) if step % cfg.log_steps == 0: time_log = '\tStep {}/Ep {}, {:.2f}s'.format( step, ep + 1, time.time() - step_st, ) if cfg.g_loss_weight > 0: g_log = (', gp {:.2%}, gm {:.2%}, ' 'gd_ap {:.4f}, gd_an {:.4f}, ' 'gL {:.4f}'.format( g_prec_meter.val, g_m_meter.val, g_dist_ap_meter.val, g_dist_an_meter.val, g_loss_meter.val, )) else: g_log = '' if cfg.l_loss_weight > 0: l_log = (', lp {:.2%}, lm {:.2%}, ' 'ld_ap {:.4f}, ld_an {:.4f}, ' 'lL {:.4f}'.format( l_prec_meter.val, l_m_meter.val, l_dist_ap_meter.val, l_dist_an_meter.val, l_loss_meter.val, )) else: l_log = '' if cfg.id_loss_weight > 0: id_log = (', idL {:.4f}'.format(id_loss_meter.val)) else: id_log = '' if cfg.sift_loss_weight > 0: sift_log = (', sL {:.4f}'.format(sift_loss_meter.val)) else: sift_log = '' if cfg.c_loss_weight > 0: c_log = (', cL {:.4f}'.format(c_loss_meter.val)) else: c_log = '' if cfg.c_loss_weight > 0: d_g_log = (', d_err {:.4f}, g_err {:.4f}'.format( d_err_meter.val, g_err_meter.val)) else: d_g_log = '' total_loss_log = ', loss {:.4f}'.format(loss_meter.val) log = time_log + \ g_log + l_log + id_log + \ d_g_log + sift_log + c_log + \ total_loss_log print(log) ############# # Epoch Log # ############# time_log = 'Ep {}, {:.2f}s'.format( ep + 1, time.time() - ep_st, ) if cfg.g_loss_weight > 0: g_log = (', gp {:.2%}, gm {:.2%}, ' 'gd_ap {:.4f}, gd_an {:.4f}, ' 'gL {:.4f}'.format( g_prec_meter.avg, g_m_meter.avg, g_dist_ap_meter.avg, g_dist_an_meter.avg, g_loss_meter.avg, )) else: g_log = '' if cfg.l_loss_weight > 0: l_log = (', lp {:.2%}, lm {:.2%}, ' 'ld_ap {:.4f}, ld_an {:.4f}, ' 'lL {:.4f}'.format( l_prec_meter.avg, l_m_meter.avg, l_dist_ap_meter.avg, l_dist_an_meter.avg, l_loss_meter.avg, )) else: l_log = '' if cfg.id_loss_weight > 0: id_log = (', idL {:.4f}'.format(id_loss_meter.avg)) else: id_log = '' if cfg.sift_loss_weight > 0: sift_log = (', sL {:.4f}'.format(sift_loss_meter.avg)) else: sift_log = '' if cfg.c_loss_weight > 0: c_log = (', cL {:.4f}'.format(c_loss_meter.avg)) else: c_log = '' if cfg.dg_loss_weight > 0: d_g_log = (', d_err {:.4f}, g_err {:.4f}'.format( d_err_meter.avg, g_err_meter.avg)) else: d_g_log = '' total_loss_log = ', loss {:.4f}'.format(loss_meter.avg) log = time_log + \ g_log + l_log + id_log + \ d_g_log + sift_log + c_log + \ total_loss_log print(log) # Log to TensorBoard if cfg.log_to_file: if writer is None: writer = SummaryWriter( log_dir=osp.join(cfg.exp_dir, 'tensorboard')) writer.add_scalars( 'loss', dict( global_loss=g_loss_meter.avg, local_loss=l_loss_meter.avg, id_loss=id_loss_meter.avg, d_err=d_err_meter.avg, g_err=g_err_meter.avg, sift_loss=sift_loss_meter.avg, c_loss=c_loss_meter.avg, loss=loss_meter.avg, ), ep) writer.add_scalars( 'tri_precision', dict( global_precision=g_prec_meter.avg, local_precision=l_prec_meter.avg, ), ep) writer.add_scalars( 'satisfy_margin', dict( global_satisfy_margin=g_m_meter.avg, local_satisfy_margin=l_m_meter.avg, ), ep) writer.add_scalars( 'global_dist', dict( global_dist_ap=g_dist_ap_meter.avg, global_dist_an=g_dist_an_meter.avg, ), ep) writer.add_scalars( 'local_dist', dict( local_dist_ap=l_dist_ap_meter.avg, local_dist_an=l_dist_an_meter.avg, ), ep) # save ckpt if cfg.log_to_file: save_ckpt(modules_optims, ep + 1, 0, cfg.ckpt_file) ######## # Test # ######## test(load_model_weight=False)
def main(): cfg = Config() # Redirect logs to both console and file. if cfg.log_to_file: ReDirectSTD(cfg.stdout_file, 'stdout', False) ReDirectSTD(cfg.stderr_file, 'stderr', False) # Lazily create SummaryWriter writer = None TVT, TMO = set_devices(cfg.sys_device_ids) if cfg.seed is not None: set_seed(cfg.seed) # Dump the configurations to log. import pprint print('-' * 60) print('cfg.__dict__') pprint.pprint(cfg.__dict__) print('-' * 60) ########### # Dataset # ########### train_set = create_dataset(**cfg.train_set_kwargs) test_sets = [] test_set_names = [] if cfg.dataset == 'combined': for name in ['market1501', 'cuhk03', 'duke']: cfg.test_set_kwargs['name'] = name test_sets.append(create_dataset(**cfg.test_set_kwargs)) test_set_names.append(name) else: test_sets.append(create_dataset(**cfg.test_set_kwargs)) test_set_names.append(cfg.dataset) ########### # Models # ########### model = Model(local_conv_out_channels=cfg.local_conv_out_channels, num_classes=len(train_set.ids2labels)) # Model wrapper model_w = DataParallel(model) ############################# # Criteria and Optimizers # ############################# id_criterion = nn.CrossEntropyLoss() g_tri_loss = TripletLoss(margin=cfg.global_margin) l_tri_loss = TripletLoss(margin=cfg.local_margin) center_loss = CenterLoss(num_classes=len(train_set.ids2labels), feat_dim=2048, use_gpu=True) optimizer = optim.Adam(model.parameters(), lr=cfg.base_lr, weight_decay=cfg.weight_decay) optimizer_centloss = torch.optim.SGD(center_loss.parameters(), lr=0.001) # Bind them together just to save some codes in the following usage. modules_optims = [model, optimizer] ################################ # May Resume Models and Optims # ################################ if cfg.resume: resume_ep, scores = load_ckpt(modules_optims, cfg.ckpt_file) # May Transfer Models and Optims to Specified Device. Transferring optimizer # is to cope with the case when you load the checkpoint to a new device. TMO(modules_optims) ######## # Test # ######## def test(load_model_weight=False): if load_model_weight: if cfg.model_weight_file != '': map_location = (lambda storage, loc: storage) sd = torch.load(cfg.model_weight_file, map_location=map_location) load_state_dict(model, sd) print('Loaded model weights from {}'.format( cfg.model_weight_file)) else: load_ckpt(modules_optims, cfg.ckpt_file) use_local_distance = (cfg.l_loss_weight > 0) \ and cfg.local_dist_own_hard_sample for test_set, name in zip(test_sets, test_set_names): test_set.set_feat_func(ExtractFeature(model_w, TVT)) print('\n=========> Test on dataset: {} <=========\n'.format(name)) test_set.eval(normalize_feat=cfg.normalize_feature, use_local_distance=use_local_distance) if cfg.only_test: test(load_model_weight=True) return ############ # Training # ############ start_ep = resume_ep if cfg.resume else 0 for ep in range(start_ep, cfg.total_epochs): # Adjust Learning Rate if cfg.lr_decay_type == 'exp': adjust_lr_exp(optimizer, cfg.base_lr, ep + 1, cfg.total_epochs, cfg.exp_decay_at_epoch) if cfg.lr_decay_type == 'exp': adjust_lr_exp(optimizer_centloss, cfg.base_lr, ep + 1, cfg.total_epochs, cfg.exp_decay_at_epoch) else: adjust_lr_staircase(optimizer, cfg.base_lr, ep + 1, cfg.staircase_decay_at_epochs, cfg.staircase_decay_multiply_factor) adjust_lr_staircase(optimizer_centloss, cfg.base_lr, ep + 1, cfg.staircase_decay_at_epochs, cfg.staircase_decay_multiply_factor) may_set_mode(modules_optims, 'train') g_prec_meter = AverageMeter() g_m_meter = AverageMeter() g_dist_ap_meter = AverageMeter() g_dist_an_meter = AverageMeter() g_loss_meter = AverageMeter() l_prec_meter = AverageMeter() l_m_meter = AverageMeter() l_dist_ap_meter = AverageMeter() l_dist_an_meter = AverageMeter() l_loss_meter = AverageMeter() id_loss_meter = AverageMeter() c_loss_meter = AverageMeter() loss_meter = AverageMeter() ep_st = time.time() step = 0 epoch_done = False while not epoch_done: step += 1 step_st = time.time() ims, im_names, labels, mirrored, epoch_done = train_set.next_batch( ) ims_var = Variable(TVT(torch.from_numpy(ims).float())) labels_t = TVT(torch.from_numpy(labels).long()) labels_var = Variable(labels_t) feat, global_feat, local_feat, logits = model_w(ims_var) g_loss, p_inds, n_inds, g_dist_ap, g_dist_an, g_dist_mat = global_loss( g_tri_loss, global_feat, labels_t, normalize_feature=cfg.normalize_feature) if cfg.l_loss_weight == 0: l_loss = 0 elif cfg.local_dist_own_hard_sample: # Let local distance find its own hard samples. l_loss, l_dist_ap, l_dist_an, _ = local_loss( l_tri_loss, local_feat, None, None, labels_t, normalize_feature=cfg.normalize_feature) else: l_loss, l_dist_ap, l_dist_an = local_loss( l_tri_loss, local_feat, p_inds, n_inds, labels_t, normalize_feature=cfg.normalize_feature) id_loss = 0 if cfg.id_loss_weight > 0: id_loss = id_criterion(logits, labels_var) c_loss = 0 if cfg.c_loss_weight > 0: c_loss = center_loss(normalize(global_feat, axis=-1), labels_var) loss = g_loss * cfg.g_loss_weight \ + l_loss * cfg.l_loss_weight \ + id_loss * cfg.id_loss_weight \ + c_loss * cfg.c_loss_weight optimizer.zero_grad() optimizer_centloss.zero_grad() loss.backward() optimizer.step() for param in center_loss.parameters(): param.grad.data *= (1 / cfg.c_loss_weight) optimizer_centloss.step() ############ # Step Log # ############ # precision g_prec = (g_dist_an > g_dist_ap).data.float().mean() # the proportion of triplets that satisfy margin g_m = (g_dist_an > g_dist_ap + cfg.global_margin).data.float().mean() g_d_ap = g_dist_ap.data.mean() g_d_an = g_dist_an.data.mean() g_prec_meter.update(g_prec) g_m_meter.update(g_m) g_dist_ap_meter.update(g_d_ap) g_dist_an_meter.update(g_d_an) g_loss_meter.update(to_scalar(g_loss)) if cfg.l_loss_weight > 0: # precision l_prec = (l_dist_an > l_dist_ap).data.float().mean() # the proportion of triplets that satisfy margin l_m = (l_dist_an > l_dist_ap + cfg.local_margin).data.float().mean() l_d_ap = l_dist_ap.data.mean() l_d_an = l_dist_an.data.mean() l_prec_meter.update(l_prec) l_m_meter.update(l_m) l_dist_ap_meter.update(l_d_ap) l_dist_an_meter.update(l_d_an) l_loss_meter.update(to_scalar(l_loss)) if cfg.id_loss_weight > 0: id_loss_meter.update(to_scalar(id_loss)) if cfg.c_loss_weight > 0: c_loss_meter.update(to_scalar(c_loss)) loss_meter.update(to_scalar(loss)) if step % cfg.log_steps == 0: time_log = '\tStep {}/Ep {}, {:.2f}s'.format( step, ep + 1, time.time() - step_st, ) if cfg.g_loss_weight > 0: g_log = (', gp {:.2%}, gm {:.2%}, ' 'gd_ap {:.4f}, gd_an {:.4f}, ' 'gL {:.4f}'.format( g_prec_meter.val, g_m_meter.val, g_dist_ap_meter.val, g_dist_an_meter.val, g_loss_meter.val, )) else: g_log = '' if cfg.l_loss_weight > 0: l_log = (', lp {:.2%}, lm {:.2%}, ' 'ld_ap {:.4f}, ld_an {:.4f}, ' 'lL {:.4f}'.format( l_prec_meter.val, l_m_meter.val, l_dist_ap_meter.val, l_dist_an_meter.val, l_loss_meter.val, )) else: l_log = '' if cfg.id_loss_weight > 0: id_log = (', idL {:.4f}'.format(id_loss_meter.val)) else: id_log = '' if cfg.c_loss_weight > 0: c_log = (', cL {:.4f}'.format(c_loss_meter.val)) else: c_log = '' total_loss_log = ', loss {:.4f}'.format(loss_meter.val) log = time_log + \ g_log + l_log + id_log + \ total_loss_log print(log) ############# # Epoch Log # ############# time_log = 'Ep {}, {:.2f}s'.format( ep + 1, time.time() - ep_st, ) if cfg.g_loss_weight > 0: g_log = (', gp {:.2%}, gm {:.2%}, ' 'gd_ap {:.4f}, gd_an {:.4f}, ' 'gL {:.4f}'.format( g_prec_meter.avg, g_m_meter.avg, g_dist_ap_meter.avg, g_dist_an_meter.avg, g_loss_meter.avg, )) else: g_log = '' if cfg.l_loss_weight > 0: l_log = (', lp {:.2%}, lm {:.2%}, ' 'ld_ap {:.4f}, ld_an {:.4f}, ' 'lL {:.4f}'.format( l_prec_meter.avg, l_m_meter.avg, l_dist_ap_meter.avg, l_dist_an_meter.avg, l_loss_meter.avg, )) else: l_log = '' if cfg.id_loss_weight > 0: id_log = (', idL {:.4f}'.format(id_loss_meter.avg)) else: id_log = '' if cfg.c_loss_weight > 0: c_log = (', cL {:.4f}'.format(c_loss_meter.avg)) else: c_log = '' total_loss_log = ', loss {:.4f}'.format(loss_meter.avg) log = time_log + \ g_log + l_log + id_log + \ c_log + total_loss_log print(log) # Log to TensorBoard if cfg.log_to_file: if writer is None: writer = SummaryWriter( log_dir=osp.join(cfg.exp_dir, 'tensorboard')) writer.add_scalars( 'loss', dict( global_loss=g_loss_meter.avg, local_loss=l_loss_meter.avg, id_loss=id_loss_meter.avg, c_loss=c_loss_meter.avg, loss=loss_meter.avg, ), ep) writer.add_scalars( 'tri_precision', dict( global_precision=g_prec_meter.avg, local_precision=l_prec_meter.avg, ), ep) writer.add_scalars( 'satisfy_margin', dict( global_satisfy_margin=g_m_meter.avg, local_satisfy_margin=l_m_meter.avg, ), ep) writer.add_scalars( 'global_dist', dict( global_dist_ap=g_dist_ap_meter.avg, global_dist_an=g_dist_an_meter.avg, ), ep) writer.add_scalars( 'local_dist', dict( local_dist_ap=l_dist_ap_meter.avg, local_dist_an=l_dist_an_meter.avg, ), ep) # save ckpt if cfg.log_to_file: save_ckpt(modules_optims, ep + 1, 0, cfg.ckpt_file) ######## # Test # ######## test(load_model_weight=False)