Exemple #1
0
def create_train_val_dataloader(opt, logger):
    # create train and val dataloaders
    train_loader, val_loader = None, None
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
            train_set = create_dataset(dataset_opt)
            train_sampler = EnlargedSampler(train_set, opt['world_size'],
                                            opt['rank'], dataset_enlarge_ratio)
            train_loader = create_dataloader(train_set,
                                             dataset_opt,
                                             num_gpu=opt['num_gpu'],
                                             dist=opt['dist'],
                                             sampler=train_sampler,
                                             seed=opt['manual_seed'])

            num_iter_per_epoch = math.ceil(
                len(train_set) * dataset_enlarge_ratio /
                (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
            total_iters = int(opt['train']['total_iter'])
            total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
            logger.info(
                'Training statistics:'
                f'\n\tNumber of train images: {len(train_set)}'
                f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
                f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
                f'\n\tWorld size (gpu number): {opt["world_size"]}'
                f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
                f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')

        elif phase == 'val':
            import os

            names = ['Test100', 'Rain100H', 'Rain100L', 'Test2800', 'Test1200']

            val_loaders = []

            for name in names:
                dataset_opt['dataroot_gt'] = os.path.join(
                    './datasets/Rain13k/test', name, 'target')
                dataset_opt['dataroot_lq'] = os.path.join(
                    './datasets/Rain13k/test', name, 'input')
                dataset_opt['io_backend'] = {'type': 'disk'}

                val_set = create_dataset(dataset_opt)
                val_loader = create_dataloader(val_set,
                                               dataset_opt,
                                               num_gpu=opt['num_gpu'],
                                               dist=opt['dist'],
                                               sampler=None,
                                               seed=opt['manual_seed'])
                logger.info(
                    f'Number of val images/folders in {dataset_opt["name"]}: '
                    f'{len(val_set)}')

                val_loaders.append(val_loader)
        else:
            raise ValueError(f'Dataset phase {phase} is not recognized.')

    return train_loader, train_sampler, val_loaders, total_epochs, total_iters
Exemple #2
0
def create_train_val_dataloader(opt, logger):
    # create train and val dataloaders
    train_loader, val_loader = None, None
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
            train_set = create_dataset(dataset_opt)
            train_sampler = EnlargedSampler(train_set, opt['world_size'],
                                            opt['rank'], dataset_enlarge_ratio)
            train_loader = create_dataloader(
                train_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=train_sampler,
                seed=opt['manual_seed'])

            num_iter_per_epoch = math.ceil(
                len(train_set) * dataset_enlarge_ratio /
                (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
            total_iters = int(opt['train']['total_iter'])
            total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
            logger.info(
                'Training statistics:'
                f'\n\tNumber of train images: {len(train_set)}'
                f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
                f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
                f'\n\tWorld size (gpu number): {opt["world_size"]}'
                f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
                f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')

        elif phase == 'val':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(
                val_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=None,
                seed=opt['manual_seed'])
            logger.info(
                f'Number of val images/folders in {dataset_opt["name"]}: '
                f'{len(val_set)}')
        else:
            raise ValueError(f'Dataset phase {phase} is not recognized.')

    return train_loader, train_sampler, val_loader, total_epochs, total_iters
Exemple #3
0
def main():
    # options
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt',
                        type=str,
                        required=True,
                        help='Path to option YAML file.')
    parser.add_argument('--launcher',
                        choices=['none', 'pytorch', 'slurm'],
                        default='none',
                        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = parse(args.opt, is_train=True)

    # distributed training settings
    if args.launcher == 'none':  # non-distributed training
        opt['dist'] = False
        print('Disable distributed training.', flush=True)
    else:
        opt['dist'] = True
        if args.launcher == 'slurm' and 'dist_params' in opt:
            init_dist(args.launcher, **opt['dist_params'])
        else:
            init_dist(args.launcher)

    rank, world_size = get_dist_info()
    opt['rank'] = rank
    opt['world_size'] = world_size

    # load resume states if exists
    if opt['path'].get('resume_state'):
        device_id = torch.cuda.current_device()
        resume_state = torch.load(
            opt['path']['resume_state'],
            map_location=lambda storage, loc: storage.cuda(device_id))
    else:
        resume_state = None

    # mkdir and loggers
    if resume_state is None:
        make_exp_dirs(opt)
    log_file = osp.join(opt['path']['log'],
                        f"train_{opt['name']}_{get_time_str()}.log")
    logger = get_root_logger(logger_name='basicsr',
                             log_level=logging.INFO,
                             log_file=log_file)
    logger.info(get_env_info())
    logger.info(dict2str(opt))
    # initialize tensorboard logger and wandb logger
    tb_logger = None
    if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']:
        log_dir = './tb_logger/' + opt['name']
        if resume_state is None and opt['rank'] == 0:
            mkdir_and_rename(log_dir)
        tb_logger = init_tb_logger(log_dir=log_dir)
    if (opt['logger'].get('wandb')
            is not None) and (opt['logger']['wandb'].get('project')
                              is not None) and ('debug' not in opt['name']):
        assert opt['logger'].get('use_tb_logger') is True, (
            'should turn on tensorboard when using wandb')
        init_wandb_logger(opt)

    # random seed
    seed = opt['manual_seed']
    if seed is None:
        seed = random.randint(1, 10000)
        opt['manual_seed'] = seed
    logger.info(f'Random seed: {seed}')
    set_random_seed(seed + rank)

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    # create train and val dataloaders
    train_loader, val_loader = None, None
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
            train_set = create_dataset(dataset_opt)
            train_sampler = EnlargedSampler(train_set, world_size, rank,
                                            dataset_enlarge_ratio)
            train_loader = create_dataloader(train_set,
                                             dataset_opt,
                                             num_gpu=opt['num_gpu'],
                                             dist=opt['dist'],
                                             sampler=train_sampler,
                                             seed=seed)

            num_iter_per_epoch = math.ceil(
                len(train_set) * dataset_enlarge_ratio /
                (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
            total_iters = int(opt['train']['total_iter'])
            total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
            logger.info(
                'Training statistics:'
                f'\n\tNumber of train images: {len(train_set)}'
                f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
                f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
                f'\n\tWorld size (gpu number): {opt["world_size"]}'
                f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
                f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
        elif phase == 'val':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(val_set,
                                           dataset_opt,
                                           num_gpu=opt['num_gpu'],
                                           dist=opt['dist'],
                                           sampler=None,
                                           seed=seed)
            logger.info(
                f'Number of val images/folders in {dataset_opt["name"]}: '
                f'{len(val_set)}')
        else:
            raise ValueError(f'Dataset phase {phase} is not recognized.')
    assert train_loader is not None

    # create model
    if resume_state:
        check_resume(opt, resume_state['iter'])  # modify pretrain_model paths
    model = create_model(opt)

    # resume training
    if resume_state:
        logger.info(f"Resuming training from epoch: {resume_state['epoch']}, "
                    f"iter: {resume_state['iter']}.")
        start_epoch = resume_state['epoch']
        current_iter = resume_state['iter']
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        start_epoch = 0
        current_iter = 0

    # create message logger (formatted outputs)
    msg_logger = MessageLogger(opt, current_iter, tb_logger)

    # dataloader prefetcher
    prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
    if prefetch_mode is None or prefetch_mode == 'cpu':
        prefetcher = CPUPrefetcher(train_loader)
    elif prefetch_mode == 'cuda':
        prefetcher = CUDAPrefetcher(train_loader, opt)
        logger.info(f'Use {prefetch_mode} prefetch dataloader')
        if opt['datasets']['train'].get('pin_memory') is not True:
            raise ValueError('Please set pin_memory=True for CUDAPrefetcher.')
    else:
        raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.'
                         "Supported ones are: None, 'cuda', 'cpu'.")

    # training
    logger.info(
        f'Start training from epoch: {start_epoch}, iter: {current_iter}')
    data_time, iter_time = time.time(), time.time()
    start_time = time.time()

    for epoch in range(start_epoch, total_epochs + 1):
        train_sampler.set_epoch(epoch)
        prefetcher.reset()
        train_data = prefetcher.next()

        while train_data is not None:
            data_time = time.time() - data_time

            current_iter += 1
            if current_iter > total_iters:
                break
            # update learning rate
            model.update_learning_rate(current_iter,
                                       warmup_iter=opt['train'].get(
                                           'warmup_iter', -1))
            # training
            model.feed_data(train_data)
            model.optimize_parameters(current_iter)
            iter_time = time.time() - iter_time
            # log
            if current_iter % opt['logger']['print_freq'] == 0:
                log_vars = {'epoch': epoch, 'iter': current_iter}
                log_vars.update({'lrs': model.get_current_learning_rate()})
                log_vars.update({'time': iter_time, 'data_time': data_time})
                log_vars.update(model.get_current_log())
                msg_logger(log_vars)

            # save models and training states
            if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
                logger.info('Saving models and training states.')
                model.save(epoch, current_iter)

            # validation
            if opt.get('val') is not None and (current_iter %
                                               opt['val']['val_freq'] == 0):
                model.validation(val_loader, current_iter, tb_logger,
                                 opt['val']['save_img'])

            data_time = time.time()
            iter_time = time.time()
            train_data = prefetcher.next()
        # end of iter

    # end of epoch

    consumed_time = str(
        datetime.timedelta(seconds=int(time.time() - start_time)))
    logger.info(f'End of training. Time consumed: {consumed_time}')
    logger.info('Save the latest model.')
    model.save(epoch=-1, current_iter=-1)  # -1 stands for the latest
    if opt.get('val') is not None:
        model.validation(val_loader, current_iter, tb_logger,
                         opt['val']['save_img'])
    if tb_logger:
        tb_logger.close()