def create_lmdb_for_reds():
    """Create lmdb files for REDS dataset.

    Usage:
        Before run this script, please run `merge_reds_train_val.py`.
        We take two folders for example:
            train_sharp
            train_sharp_bicubic
        Remember to modify opt configurations according to your settings.
    """
    # train_sharp
    folder_path = 'datasets/REDS/train_sharp'
    lmdb_path = 'datasets/REDS/train_sharp_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds(folder_path)
    make_lmdb_from_imgs(folder_path,
                        lmdb_path,
                        img_path_list,
                        keys,
                        multiprocessing_read=True)

    # train_sharp_bicubic
    folder_path = 'datasets/REDS/train_sharp_bicubic'
    lmdb_path = 'datasets/REDS/train_sharp_bicubic_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds(folder_path)
    make_lmdb_from_imgs(folder_path,
                        lmdb_path,
                        img_path_list,
                        keys,
                        multiprocessing_read=True)
def create_lmdb_for_vimeo90k():
    """Create lmdb files for Vimeo90K dataset.

    Usage:
        Remember to modify opt configurations according to your settings.
    """
    # GT
    folder_path = 'datasets/vimeo90k/vimeo_septuplet/sequences'
    lmdb_path = 'datasets/vimeo90k/vimeo90k_train_GT_only4th.lmdb'
    train_list_path = 'datasets/vimeo90k/vimeo_septuplet/sep_trainlist.txt'
    img_path_list, keys = prepare_keys_vimeo90k(folder_path, train_list_path,
                                                'gt')
    make_lmdb_from_imgs(folder_path,
                        lmdb_path,
                        img_path_list,
                        keys,
                        multiprocessing_read=True)

    # LQ
    folder_path = 'datasets/vimeo90k/vimeo_septuplet_matlabLRx4/sequences'
    lmdb_path = 'datasets/vimeo90k/vimeo90k_train_LR7frames.lmdb'
    train_list_path = 'datasets/vimeo90k/vimeo_septuplet/sep_trainlist.txt'
    img_path_list, keys = prepare_keys_vimeo90k(folder_path, train_list_path,
                                                'lq')
    make_lmdb_from_imgs(folder_path,
                        lmdb_path,
                        img_path_list,
                        keys,
                        multiprocessing_read=True)
Exemple #3
0
def create_lmdb_for_rain13k():
    folder_path = './datasets/Rain13k/train/input'
    lmdb_path = './datasets/Rain13k/train/input.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'jpg')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/Rain13k/train/target'
    lmdb_path = './datasets/Rain13k/train/target.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'jpg')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)
def create_lmdb_for_div2k():
    """Create lmdb files for DIV2K dataset.

    Usage:
        Before run this script, please run `extract_subimages.py`.
        Typically, there are four folders to be processed for DIV2K dataset.
            DIV2K_train_HR_sub
            DIV2K_train_LR_bicubic/X2_sub
            DIV2K_train_LR_bicubic/X3_sub
            DIV2K_train_LR_bicubic/X4_sub
        Remember to modify opt configurations according to your settings.
    """
    # HR images
    folder_path = 'datasets/DIV2K/DIV2K_train_HR_sub'
    lmdb_path = 'datasets/DIV2K/DIV2K_train_HR_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    # LRx2 images
    folder_path = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X2_sub'
    lmdb_path = 'datasets/DIV2K/DIV2K_train_LR_bicubic_X2_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    # LRx3 images
    folder_path = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X3_sub'
    lmdb_path = 'datasets/DIV2K/DIV2K_train_LR_bicubic_X3_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    # LRx4 images
    folder_path = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub'
    lmdb_path = 'datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)
Exemple #5
0
def create_lmdb_for_SIDD():
    folder_path = './datasets/SIDD/train/input_crops'
    lmdb_path = './datasets/SIDD/train/input_crops.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'PNG')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/SIDD/train/gt_crops'
    lmdb_path = './datasets/SIDD/train/gt_crops.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'PNG')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    #for val
    folder_path = './datasets/SIDD/val/input_crops'
    lmdb_path = './datasets/SIDD/val/input_crops.lmdb'
    mat_path = './datasets/SIDD/ValidationNoisyBlocksSrgb.mat'
    if not osp.exists(folder_path):
        os.makedirs(folder_path)
    assert osp.exists(mat_path)
    data = scio.loadmat(mat_path)['ValidationNoisyBlocksSrgb']
    N, B, H, W, C = data.shape
    data = data.reshape(N * B, H, W, C)
    for i in tqdm(range(N * B)):
        cv2.imwrite(
            osp.join(folder_path, 'ValidationBlocksSrgb_{}.png'.format(i)),
            cv2.cvtColor(data[i, ...], cv2.COLOR_RGB2BGR))
    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/SIDD/val/gt_crops'
    lmdb_path = './datasets/SIDD/val/gt_crops.lmdb'
    mat_path = './datasets/SIDD/ValidationGtBlocksSrgb.mat'
    if not osp.exists(folder_path):
        os.makedirs(folder_path)
    assert osp.exists(mat_path)
    data = scio.loadmat(mat_path)['ValidationGtBlocksSrgb']
    N, B, H, W, C = data.shape
    data = data.reshape(N * B, H, W, C)
    for i in tqdm(range(N * B)):
        cv2.imwrite(
            osp.join(folder_path, 'ValidationBlocksSrgb_{}.png'.format(i)),
            cv2.cvtColor(data[i, ...], cv2.COLOR_RGB2BGR))
    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)
Exemple #6
0
def create_lmdb_for_reds():
    folder_path = './datasets/REDS/val/sharp_300'
    lmdb_path = './datasets/REDS/val/sharp_300.lmdb'
    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)
    #
    folder_path = './datasets/REDS/val/blur_300'
    lmdb_path = './datasets/REDS/val/blur_300.lmdb'
    img_path_list, keys = prepare_keys(folder_path, 'jpg')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/REDS/train/train_sharp'
    lmdb_path = './datasets/REDS/train/train_sharp.lmdb'
    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/REDS/train/train_blur_jpeg'
    lmdb_path = './datasets/REDS/train/train_blur_jpeg.lmdb'
    img_path_list, keys = prepare_keys(folder_path, 'jpg')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)
Exemple #7
0
def create_lmdb_for_gopro():
    folder_path = './datasets/GoPro/train/blur_crops'
    lmdb_path = './datasets/GoPro/train/blur_crops.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/GoPro/train/sharp_crops'
    lmdb_path = './datasets/GoPro/train/sharp_crops.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/GoPro/test/target'
    lmdb_path = './datasets/GoPro/test/target.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    folder_path = './datasets/GoPro/test/input'
    lmdb_path = './datasets/GoPro/test/input.lmdb'

    img_path_list, keys = prepare_keys(folder_path, 'png')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)