def __init__( self, dimensions, n_points=500, n_initial_points=10, init_strategy="sb", gp_kernel=None, gp_kwargs=None, gp_priors=None, acq_func="pvrs", acq_func_kwargs=None, random_state=None, **kwargs, ): self.rng = check_random_state(random_state) if callable(acq_func): self.acq_func = acq_func else: self.acq_func = ACQUISITION_FUNC[acq_func] if acq_func_kwargs is None: acq_func_kwargs = {} self.acq_func_kwargs = acq_func_kwargs self.space = normalize_dimensions(dimensions) self._n_initial_points = n_initial_points self.n_initial_points_ = n_initial_points self.init_strategy = init_strategy if self.init_strategy == "r2": self._initial_points = self.space.inverse_transform( r2_sequence(n=n_initial_points, d=self.space.n_dims) ) elif self.init_strategy == "sb": self._init_rng = np.random.RandomState(self.rng.randint(2 ** 31)) self.n_points = n_points if gp_kwargs is None: gp_kwargs = {} if gp_kernel is None: # For now the default kernel is not adapted to the dimensions, # which is why a simple list is passed: gp_kernel = construct_default_kernel( list(range(self.space.transformed_n_dims)) ) self.gp = BayesGPR( kernel=gp_kernel, random_state=self.rng.randint(0, np.iinfo(np.int32).max), **gp_kwargs, ) self.gp_priors = gp_priors self.Xi = [] self.yi = [] self.noisei = [] self._next_x = None
def minimal_gp(request): kernel = ConstantKernel( constant_value=1 ** 2, constant_value_bounds=(0.01 ** 2, 1 ** 2) ) * RBF(length_scale=1.0, length_scale_bounds=(0.5, 1.5)) gp = BayesGPR( random_state=1, normalize_y=False, kernel=kernel, warp_inputs=request.param ) return gp
class Optimizer(): """Execute a stepwise Bayesian optimization. Parameters ---------- dimensions : list, shape (n_dims,) List of search space dimensions. Each search dimension can be defined either as - a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer` dimensions), - a `(lower_bound, upper_bound, "prior")` tuple (for `Real` dimensions), - as a list of categories (for `Categorical` dimensions), or - an instance of a `Dimension` object (`Real`, `Integer` or `Categorical`). n_points : int, default=500 Number of random points to evaluate the acquisition function on. n_initial_points : int, default=10 Number of initial points to sample before fitting the GP. init_strategy : string or None, default="sb" Type of initialization strategy to use for the initial ``n_initial_points``. Should be one of - "sb": The Steinberger low-discrepancy sequence - "r2": The R2 sequence (works well for up to two parameters) - "random" or None: Uniform random sampling gp_kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, a suitable default kernel is constructed. Note that the kernel’s hyperparameters are estimated using MCMC during fitting. gp_kwargs : dict, optional Dict of arguments passed to :class:`BayesGPR`. For example, ``{'normalize_y': True}`` would allow the GP to normalize the output values before fitting. gp_priors : list of callables, optional List of prior distributions for the kernel hyperparameters of the GP. Each callable returns the logpdf of the prior distribution. Remember that a WhiteKernel is added to the ``gp_kernel``, which is why you need to include a prior distribution for that as well. If None, will try to guess suitable prior distributions. acq_func : string or Acquisition object, default="pvrs" Acquisition function to use as a criterion to select new points to test. By default we use "pvrs", which is a very robust criterion with fast convergence. Should be one of - 'pvrs' Predictive variance reductions search - 'mes' Max-value entropy search - 'ei' Expected improvement - 'ttei' Top-two expected improvement - 'lcb' Lower confidence bound - 'mean' Expected value of the GP - 'ts' Thompson sampling - 'vr' Global variance reduction Can also be a custom :class:`Acquisition` object. acq_func_kwargs : dict, optional Dict of arguments passed to :class:`Acquisition`. random_state : int or RandomState or None, optional, default=None Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Attributes ---------- Xi : list Points at which objective has been evaluated. yi : scalar Values of objective at corresponding points in `Xi`. space : Space An instance of :class:`skopt.space.Space`. Stores parameter search space used to sample points, bounds, and type of parameters. gp : BayesGPR object The current underlying GP model, which is used to calculate the acquisition function. gp_priors : list of callables List of prior distributions for the kernel hyperparameters of the GP. Each callable returns the logpdf of the prior distribution. n_initial_points_ : int Number of initial points to sample noisei : list of floats Additional pointwise noise which is added to the diagonal of the kernel matrix """ def __init__( self, dimensions, n_points=500, n_initial_points=10, init_strategy="sb", gp_kernel=None, gp_kwargs=None, gp_priors=None, acq_func="pvrs", acq_func_kwargs=None, random_state=None, **kwargs, ): self.rng = check_random_state(random_state) if callable(acq_func): self.acq_func = acq_func else: self.acq_func = ACQUISITION_FUNC[acq_func] if acq_func_kwargs is None: acq_func_kwargs = {} self.acq_func_kwargs = acq_func_kwargs self.space = normalize_dimensions(dimensions) self._n_initial_points = n_initial_points self.n_initial_points_ = n_initial_points self.init_strategy = init_strategy if self.init_strategy == "r2": self._initial_points = self.space.inverse_transform( r2_sequence(n=n_initial_points, d=self.space.n_dims)) elif self.init_strategy == "sb": self._init_rng = np.random.RandomState(self.rng.randint(2**31)) self.n_points = n_points if gp_kwargs is None: gp_kwargs = {} if gp_kernel is None: # For now the default kernel is not adapted to the dimensions, # which is why a simple list is passed: gp_kernel = construct_default_kernel( list(range(self.space.transformed_n_dims))) self.gp = BayesGPR( kernel=gp_kernel, random_state=self.rng.randint(0, np.iinfo(np.int32).max), **gp_kwargs, ) self.gp_priors = gp_priors self.Xi = [] self.yi = [] self.noisei = [] self._next_x = None def ask(self, n_points=1): """Ask the optimizer for the next point to evaluate. If the optimizer is still in its initialization phase, it will return a point as specified by the init_strategy. If the Gaussian process has been fit, a previously computed point as Parameters ---------- n_points : int Number of points to return. This is currently not implemented and will raise a NotImplementedError. Returns ------- list A list with the same dimensionality as the optimization space. Raises ------ NotImplementedError If n_points is != 1, which is not implemented yet. """ if n_points > 1: raise NotImplementedError( "Returning multiple points is not implemented yet.") if self._n_initial_points > 0: if self.init_strategy == "r2": return self._initial_points[self._n_initial_points - 1] if self.init_strategy == "sb": existing_points = (self.space.transform(self.Xi) if len(self.Xi) > 0 else None) points = sb_sequence( n=len(self.Xi) + 1, d=self.space.transformed_n_dims, existing_points=existing_points, random_state=self._init_rng.randint(2**31), ) return self.space.inverse_transform( np.atleast_2d(points[len(self.Xi)]))[0] return self.space.rvs()[0] if not self.gp.kernel_: raise RuntimeError( "Initialization is finished, but no model has been fit.") return self._next_x def tell( self, x, y, noise_vector=None, fit=True, replace=False, n_samples=0, gp_samples=100, gp_burnin=10, progress=False, ): """Inform the optimizer about the objective function at discrete points. Provide values of the objective function at points suggested by `ask()` or other points. By default a new model will be fit to all observations. The new model is used to suggest the next point at which to evaluate the objective. This point can be retrieved by calling `ask()`. To add observations without fitting a new model set `fit` to False. To add multiple observations in a batch pass a list-of-lists for `x` and a list of scalars for `y`. Parameters ---------- x : list or list of lists Point(s) at which the objective function was evaluated. y : scalar or list Value(s) of the objective function at `x`. noise_vector : list, default=None Variance(s) of the objective function at `x`. fit : bool, optional (default: True) If True, a model will be fitted to the points, if `n_initial_points` points have been evaluated. replace : bool, optional (default: False) If True, the existing data points will be replaced with the one given in `x` and `y`. n_samples : int, optional (default: 0) Number of hyperposterior samples over which to average the acquisition function. More samples make the acquisition function more robust, but increase the running time. Can be set to 0 for `pvrs` and `vr`. gp_samples : int, optional (default: 100) Number of hyperposterior samples to collect during inference. More samples result in a more accurate representation of the hyperposterior, but increase the running time. Has to be a multiple of 100. gp_burnin : int, optional (default: 10) Number of inference iterations to discard before beginning collecting hyperposterior samples. Only needs to be increased, if the hyperposterior after burnin has not settled on the typical set. Drastically increases running time. progress : bool, optional (default: False) If True, show a progress bar during the inference phase. Returns ------- scipy.optimize.OptimizeResult object Contains the points, the values of the objective function, the search space, the random state and the list of models. """ if replace: self.Xi = [] self.yi = [] self.noisei = [] self._n_initial_points = self.n_initial_points_ if is_listlike(y) and is_2Dlistlike(x): self.Xi.extend(x) self.yi.extend(y) if noise_vector is None: noise_vector = [0.0] * len(y) elif not is_listlike(noise_vector) or len(noise_vector) != len(y): raise ValueError( "Vector of noise variances needs to be of equal length as `y`." ) self.noisei.extend(noise_vector) self._n_initial_points -= len(y) elif is_listlike(x): self.Xi.append(x) self.yi.append(y) if noise_vector is None: noise_vector = 0.0 elif is_listlike(noise_vector): raise ValueError( "Vector of noise variances is a list, while tell only received one" "datapoint.") self.noisei.append(noise_vector) self._n_initial_points -= 1 else: raise ValueError( f"Type of arguments `x` ({type(x)}) and `y` ({type(y)}) " "not compatible.") if fit and self._n_initial_points <= 0: if (self.gp_priors is not None and len(self.gp_priors) != self.space.transformed_n_dims + 2): raise ValueError( "The number of priors does not match the number of dimensions + 2." ) with warnings.catch_warnings(): warnings.simplefilter("ignore") if self.gp.pos_ is None or replace: self.gp.fit( self.space.transform(self.Xi), self.yi, noise_vector=np.array(self.noisei), priors=self.gp_priors, n_desired_samples=gp_samples, n_burnin=gp_burnin, progress=progress, ) else: self.gp.sample( self.space.transform(self.Xi), self.yi, noise_vector=np.array(self.noisei), priors=self.gp_priors, n_desired_samples=gp_samples, n_burnin=gp_burnin, progress=progress, ) if self.gp.warp_inputs: X_warped = self.rng.uniform( size=(self.n_points, self.space.transformed_n_dims)) X = self.gp.unwarp(X_warped) else: X = self.space.transform( self.space.rvs(n_samples=self.n_points, random_state=self.rng)) acq_values = evaluate_acquisitions( X=X, gpr=self.gp, acquisition_functions=(self.acq_func, ), n_samples=n_samples, progress=False, random_state=self.rng.randint(0, np.iinfo(np.int32).max), **self.acq_func_kwargs, ).flatten() self._next_x = self.space.inverse_transform( X[np.argmax(acq_values)].reshape((1, -1)))[0] return create_result(self.Xi, self.yi, self.space, self.rng, models=[self.gp]) def run(self, func, n_iter=1, replace=False, n_samples=5, gp_samples=100, gp_burnin=10): """Execute the ask/tell-loop on a given objective function. Parameters ---------- func : function The objective function to minimize. Should either return a scalar value, or a tuple (value, noise) where the noise should be a variance. n_iter : int, optional (default: 1) Number of iterations to perform. replace : bool, optional (default: False) If True, the existing data points will be replaced with the ones collected from now on. The existing model will be used as initialization. n_samples : int, optional (default: 5) Number of hyperposterior samples over which to average the acquisition function. gp_samples : int, optional (default: 100) Number of hyperposterior samples to collect during inference. More samples result in a more accurate representation of the hyperposterior, but increase the running time. Has to be a multiple of 100. gp_burnin : int, optional (default: 10) Number of inference iterations to discard before beginning collecting hyperposterior samples. Only needs to be increased, if the hyperposterior after burnin has not settled on the typical set. Drastically increases running time. Returns ------- scipy.optimize.OptimizeResult object Contains the points, the values of the objective function, the search space, the random state and the list of models. """ for _ in range(n_iter): x = self.ask() out = func(x) if hasattr(out, "__len__"): val, noise = out else: val = out noise = 0.0 self.tell( x, val, noise_vector=noise, n_samples=n_samples, gp_samples=gp_samples, gp_burnin=gp_burnin, replace=replace, ) replace = False return create_result(self.Xi, self.yi, self.space, self.rng, models=[self.gp]) def probability_of_optimality( self, threshold, n_space_samples=500, n_gp_samples=200, n_random_starts=100, use_mean_gp=True, normalized_scores=True, random_state=None, ): """ Compute the probability that the current expected optimum cannot be improved by more than ``threshold`` points. Parameters ---------- threshold : float or list-of-floats Other points have to be better than the current optimum by at least a margin of size ``threshold``. If a list is passed, this will return a list of probabilities. n_space_samples : int, default=500 Number of random samples used to cover the optimization space. n_gp_samples : int, default=200 Number of functions to sample from the Gaussian process. n_random_starts : int, default=100 Number of random positions to start the optimizer from in order to determine the global optimum. use_mean_gp : bool, default=True If True, random functions will be sampled from the consensus GP, which is usually faster, but could underestimate the variability. If False, the posterior distribution over hyperparameters is used to sample different GPs and then sample functions. normalized_scores : bool, optional (default: True) If True, normalize the optimality gaps by the function specific standard deviation. This makes the optimality gaps more comparable, especially if `use_mean_gp` is False. random_state : int, RandomState instance, or None (default) Set random state to something other than None for reproducible results. Returns ------- probabilities : float or list-of-floats Probabilities of the current optimum to be optimal wrt the given thresholds. """ result = create_result(self.Xi, self.yi, self.space, self.rng, models=[self.gp]) X_orig = [ expected_minimum(result, random_state=random_state, n_random_starts=n_random_starts)[0] ] X_orig.extend( self.space.rvs(n_samples=n_space_samples, random_state=random_state)) X_trans = self.space.transform(X_orig) score_samples = self.gp.sample_y( X_trans, n_samples=n_gp_samples, sample_mean=use_mean_gp, random_state=random_state, ) if normalized_scores: std = np.std(score_samples, axis=0) if not is_listlike(threshold): threshold = [threshold] probabilities = [] for eps in threshold: if normalized_scores: diff = (score_samples[0][None, :] - score_samples) / std else: diff = score_samples[0][None, :] - score_samples probabilities.append(((diff - eps).max(axis=0) < 0.0).mean()) if len(probabilities) == 1: return probabilities[0] return probabilities def expected_optimality_gap( self, max_tries=3, n_probabilities=50, n_space_samples=500, n_gp_samples=200, n_random_starts=100, tol=0.01, use_mean_gp=True, normalized_scores=True, random_state=None, ): """ Estimate the expected optimality gap by repeatedly sampling functions consistent with the data. Parameters ---------- max_tries : int, default=3 Maximum amount of tries to compute the current global optimum. Raises a ValueError, if it fails. n_probabilities : int, default=50 Number of probabilities to calculate in order to estimate the cumulative distribution function for the optimality gap. n_space_samples : int, default=500 Number of random samples used to cover the optimization space. n_gp_samples : int, default=200 Number of functions to sample from the Gaussian process. n_random_starts : int, default=100 Number of random positions to start the optimizer from in order to determine the global optimum. tol : float, default=0.01 Tolerance with which to determine the upper bound for the optimality gap. use_mean_gp : bool, default=True If True, random functions will be sampled from the consensus GP, which is usually faster, but could underestimate the variability. If False, the posterior distribution over hyperparameters is used to sample different GPs and then sample functions. normalized_scores : bool, optional (default: True) If True, normalize the optimality gaps by the function specific standard deviation. This makes the optimality gaps more comparable, especially if `use_mean_gp` is False. random_state : int, RandomState instance, or None (default) Set random state to something other than None for reproducible results. Returns ------- expected_gap : float The expected optimality gap of the current global optimum with respect to randomly sampled, consistent optima. """ random_state = check_random_state(random_state) seed = random_state.randint(0, 2**32 - 1, dtype=np.int64) def func(threshold): prob = self.probability_of_optimality( threshold=threshold, n_random_starts=n_random_starts, n_gp_samples=n_gp_samples, n_space_samples=n_space_samples, use_mean_gp=use_mean_gp, normalized_scores=normalized_scores, random_state=seed, ) return (prob - 1.0)**2 + threshold**2 * 1e-3 max_observed_gap = np.max(self.yi) - np.min(self.yi) for _ in range(max_tries): try: upper_threshold = minimize_scalar(func, bounds=(0.0, max_observed_gap), tol=tol).x break except ValueError: pass else: raise ValueError( "Determining the upper threshold was not possible.") thresholds = list(np.linspace(0, upper_threshold, num=n_probabilities)) probabilities = self.probability_of_optimality( thresholds, n_random_starts=n_random_starts, n_gp_samples=n_gp_samples, n_space_samples=n_space_samples, use_mean_gp=use_mean_gp, normalized_scores=normalized_scores, random_state=seed, ) expected_gap = 0.0 for i in range(0, len(probabilities) - 1): p = probabilities[i + 1] - probabilities[i] expected_gap += p * thresholds[i + 1] return expected_gap def optimum_intervals( self, hdi_prob=0.95, multimodal=True, opt_samples=200, space_samples=500, only_mean=True, random_state=None, ): """Estimate highest density intervals for the optimum. Employs Thompson sampling to obtain samples from the optimum distribution. For each dimension separately, it will then estimate highest density intervals. Parameters ---------- hdi_prob : float, default=0.95 The total probability each interval should cover. multimodal : bool, default=True If True, more than one interval can be returned for one parameter. opt_samples : int, default=200 Number of samples to generate from the optimum distribution. space_samples : int, default=500 Number of samples to cover the optimization space with. only_mean : bool, default=True If True, it will only sample optima from the mean Gaussian process. This is usually faster, but can underestimate the uncertainty. If False, it will also sample the hyperposterior of the kernel parameters. random_state : int, RandomState instance or None, optional (default: None) The generator used to initialize the centers. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- intervals : list of ndarray Outputs an array of size (n_modes, 2) for each dimension in the optimization space. Raises ------ NotImplementedError If the user calls the function on an optimizer containing at least one categorical parameter. """ if self.space.is_partly_categorical: raise NotImplementedError( "Highest density interval not implemented for categorical parameters." ) X = self.space.rvs(n_samples=space_samples, random_state=random_state) X = self.space.transform(X) optimum_samples = self.gp.sample_y(X, sample_mean=only_mean, n_samples=opt_samples, random_state=random_state) X_opt = X[np.argmin(optimum_samples, axis=0)] intervals = [] for i, col in enumerate(X_opt.T): raw_interval = hdi(col, hdi_prob=hdi_prob, multimodal=multimodal) intervals.append( self.space.dimensions[i].inverse_transform(raw_interval)) return intervals
def minimal_gp(): kernel = (ConstantKernel(constant_value=1**2, constant_value_bounds=(0.01**2, 1**2)) * RBF(length_scale=1.0, length_scale_bounds=(0.5, 1.5))) gp = BayesGPR(random_state=1, normalize_y=False, kernel=kernel) return gp