mlp = lasagne.layers.DropoutLayer(mlp, p=dropout_in)

    for k in range(n_hidden_layers):

        mlp = binary_connect.DenseLayer(
            mlp,
            binary=binary,
            stochastic=stochastic,
            H=H,
            nonlinearity=lasagne.nonlinearities.identity,
            num_units=num_units)

        mlp = batch_norm.BatchNormLayer(
            mlp,
            epsilon=epsilon,
            alpha=alpha,
            nonlinearity=lasagne.nonlinearities.rectify)

        mlp = lasagne.layers.DropoutLayer(mlp, p=dropout_hidden)

    mlp = binary_connect.DenseLayer(
        mlp,
        binary=binary,
        stochastic=stochastic,
        H=H,
        nonlinearity=lasagne.nonlinearities.identity,
        num_units=7)

    mlp = batch_norm.BatchNormLayer(
        mlp,
Exemple #2
0
    update_type = 200  #intialize the update_type to be normal training

    cnn = lasagne.layers.InputLayer(shape=(None, 1, 28, 28), input_var=input)

    cnn = Conv2DLayer(cnn,
                      discrete=discrete,
                      H=H,
                      N=N,
                      num_filters=32,
                      filter_size=(5, 5),
                      pad='valid',
                      nonlinearity=lasagne.nonlinearities.identity)

    cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
    cnn = batch_norm.BatchNormLayer(cnn, epsilon=epsilon, alpha=alpha)
    cnn = lasagne.layers.NonlinearityLayer(cnn, nonlinearity=activation)
    cnn = Conv2DLayer(cnn,
                      discrete=discrete,
                      H=H,
                      N=N,
                      num_filters=64,
                      filter_size=(5, 5),
                      pad='valid',
                      nonlinearity=lasagne.nonlinearities.identity)

    cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
    cnn = batch_norm.BatchNormLayer(cnn, epsilon=epsilon, alpha=alpha)
    cnn = lasagne.layers.NonlinearityLayer(cnn, nonlinearity=activation)

    cnn = DenseLayer(cnn,
Exemple #3
0
def main(method, LR_start, Binarize_weight_only):

    # BN parameters
    name = "mnist"
    print("dataset = " + str(name))

    print("Binarize_weight_only=" + str(Binarize_weight_only))

    print("Method = " + str(method))

    # alpha is the exponential moving average factor
    alpha = .1
    print("alpha = " + str(alpha))
    epsilon = 1e-4
    print("epsilon = " + str(epsilon))

    batch_size = 100
    print("batch_size = " + str(batch_size))

    num_epochs = 50
    print("num_epochs = " + str(num_epochs))

    # network structure
    num_units = 2048
    print("num_units = " + str(num_units))
    n_hidden_layers = 3
    print("n_hidden_layers = " + str(n_hidden_layers))

    print("LR_start = " + str(LR_start))
    LR_decay = 0.1
    print("LR_decay=" + str(LR_decay))

    if Binarize_weight_only == "w":
        activation = lasagne.nonlinearities.rectify
    else:
        activation = lab.binary_tanh_unit
    print("activation = " + str(activation))

    print('Loading MNIST dataset...')

    train_set = MNIST(which_set='train', start=0, stop=50000, center=True)
    valid_set = MNIST(which_set='train', start=50000, stop=60000, center=True)
    test_set = MNIST(which_set='test', center=True)

    # bc01 format
    train_set.X = train_set.X.reshape(-1, 1, 28, 28)
    valid_set.X = valid_set.X.reshape(-1, 1, 28, 28)
    test_set.X = test_set.X.reshape(-1, 1, 28, 28)

    # flatten targets
    train_set.y = np.hstack(train_set.y)
    valid_set.y = np.hstack(valid_set.y)
    test_set.y = np.hstack(test_set.y)

    # Onehot the targets
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    print('Building the MLP...')

    # Prepare Theano variables for inputs and targets
    input = T.tensor4('inputs')
    target = T.matrix('targets')
    LR = T.scalar('LR', dtype=theano.config.floatX)

    mlp = lasagne.layers.InputLayer(shape=(None, 1, 28, 28), input_var=input)

    for k in range(n_hidden_layers):
        mlp = lab.DenseLayer(mlp,
                             nonlinearity=lasagne.nonlinearities.identity,
                             num_units=num_units,
                             method=method)
        mlp = batch_norm.BatchNormLayer(mlp, epsilon=epsilon, alpha=alpha)
        mlp = lasagne.layers.NonlinearityLayer(mlp, nonlinearity=activation)

    mlp = lab.DenseLayer(mlp,
                         nonlinearity=lasagne.nonlinearities.identity,
                         num_units=10,
                         method=method)

    mlp = batch_norm.BatchNormLayer(mlp, epsilon=epsilon, alpha=alpha)

    train_output = lasagne.layers.get_output(mlp, deterministic=False)

    # squared hinge loss
    loss = T.mean(T.sqr(T.maximum(0., 1. - target * train_output)))

    if method != "FPN":

        # W updates
        W = lasagne.layers.get_all_params(mlp, binary=True)
        W_grads = lab.compute_grads(loss, mlp)
        updates = optimizer.adam(loss_or_grads=W_grads,
                                 params=W,
                                 learning_rate=LR)
        updates = lab.clipping_scaling(updates, mlp)

        # other parameters updates
        params = lasagne.layers.get_all_params(mlp,
                                               trainable=True,
                                               binary=False)
        updates = OrderedDict(updates.items() + optimizer.adam(
            loss_or_grads=loss, params=params, learning_rate=LR).items())

        ## update 2nd moment, can get from the adam optimizer also
        updates3 = OrderedDict()
        acc_tag = lasagne.layers.get_all_params(mlp, acc=True)
        idx = 0
        beta2 = 0.999
        for acc_tag_temp in acc_tag:
            updates3[acc_tag_temp] = acc_tag_temp * beta2 + W_grads[
                idx] * W_grads[idx] * (1 - beta2)
            idx = idx + 1

        updates = OrderedDict(updates.items() + updates3.items())

    else:
        params = lasagne.layers.get_all_params(mlp, trainable=True)
        updates = optimizer.adam(loss_or_grads=loss,
                                 params=params,
                                 learning_rate=LR)

    test_output = lasagne.layers.get_output(mlp, deterministic=True)
    test_loss = T.mean(T.sqr(T.maximum(0., 1. - target * test_output)))
    test_err = T.mean(T.neq(T.argmax(test_output, axis=1),
                            T.argmax(target, axis=1)),
                      dtype=theano.config.floatX)

    # Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
    # and returning the corresponding training loss:
    train_fn = theano.function([input, target, LR], loss, updates=updates)
    val_fn = theano.function([input, target], [test_loss, test_err])

    print('Training...')

    lab.train(name, method, train_fn, val_fn, batch_size, LR_start, LR_decay,
              num_epochs, train_set.X, train_set.y, valid_set.X, valid_set.y,
              test_set.X, test_set.y)
Exemple #4
0
def main(method,LR_start):
	
	# BN parameters
	name = "mnist"
	print("dataset = "+str(name))
	print("Method = "+str(method))
	# alpha is the exponential moving average factor
	alpha = .1
	print("alpha = "+str(alpha))
	epsilon = 1e-4
	print("epsilon = "+str(epsilon))
	
	batch_size = 100
	print("batch_size = "+str(batch_size))

	num_epochs = 50
	print("num_epochs = "+str(num_epochs))

	# network structure
	num_units = 2048
	print("num_units = "+str(num_units))
	n_hidden_layers = 3
	print("n_hidden_layers = "+str(n_hidden_layers))

	print("LR_start = "+str(LR_start))
	LR_decay = 0.1
	print("LR_decay="+str(LR_decay))
	
	activation = lasagne.nonlinearities.rectify


	print('Loading MNIST dataset...')
	
	train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = True)
	valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = True)
	test_set = MNIST(which_set= 'test', center = True)
	
	# bc01 format
	train_set.X = train_set.X.reshape(-1, 1, 28, 28)
	valid_set.X = valid_set.X.reshape(-1, 1, 28, 28)
	test_set.X = test_set.X.reshape(-1, 1, 28, 28)
	
	# flatten targets
	train_set.y = np.hstack(train_set.y)
	valid_set.y = np.hstack(valid_set.y)
	test_set.y = np.hstack(test_set.y)
	
	# Onehot the targets
	train_set.y = np.float32(np.eye(10)[train_set.y])    
	valid_set.y = np.float32(np.eye(10)[valid_set.y])
	test_set.y = np.float32(np.eye(10)[test_set.y])
	
	# for hinge loss
	train_set.y = 2* train_set.y - 1.
	valid_set.y = 2* valid_set.y - 1.
	test_set.y = 2* test_set.y - 1.

	print('Building the MLP...') 
	
	# Prepare Theano variables for inputs and targets
	input = T.tensor4('inputs')
	target = T.matrix('targets')
	LR = T.scalar('LR', dtype=theano.config.floatX)

	mlp = lasagne.layers.InputLayer(
			shape=(None, 1, 28, 28),
			input_var=input)
	
	for k in range(n_hidden_layers):
		mlp = laq.DenseLayer(
				mlp, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=num_units,
				method = method)                  	
		mlp = batch_norm.BatchNormLayer(
				mlp,
				epsilon=epsilon, 
				alpha=alpha)
		mlp = lasagne.layers.NonlinearityLayer(
				mlp,
				nonlinearity = activation)

	mlp = laq.DenseLayer(
				mlp, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=10,
				method = method)      
				  
	mlp = batch_norm.BatchNormLayer(
			mlp,
			epsilon=epsilon, 
			alpha=alpha)

	train_output = lasagne.layers.get_output(mlp, deterministic=False)
	# squared hinge loss
	loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
	

	if method!="FPN":
		
		# W updates
		W = lasagne.layers.get_all_params(mlp, quantized=True)
		W_grads = laq.compute_grads(loss,mlp)
		updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
		updates = laq.clipping_scaling(updates,mlp)
		
		# other parameters updates
		params = lasagne.layers.get_all_params(mlp, trainable=True, quantized=False)
		updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, 
			learning_rate=LR, epsilon = 1e-8).items())


		## update the ternary matrix
		ternary_weights = laq.get_quantized_weights(loss, mlp)
		updates2 = OrderedDict()
		idx = 0
		tt_tag = lasagne.layers.get_all_params(mlp, tt=True)	
		for tt_tag_temp in tt_tag:
			updates2[tt_tag_temp]= ternary_weights[idx]
			idx = idx+1
		updates = OrderedDict(updates.items() + updates2.items())

		## update 2nd momentum
		updates3 = OrderedDict()
		acc_tag = lasagne.layers.get_all_params(mlp, acc=True)	
		idx = 0
		beta2 = 0.999
		for acc_tag_temp in acc_tag:
			updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
			idx = idx+1

		updates = OrderedDict(updates.items() + updates3.items())

	else:
		params = lasagne.layers.get_all_params(mlp, trainable=True)
		updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)

	test_output = lasagne.layers.get_output(mlp, deterministic=True)
		
	test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
	test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
	

	train_fn = theano.function([input, target, LR], loss, updates=updates)

	val_fn = theano.function([input, target], [test_loss, test_err])

	print('Training...')
	
	

	X_train = train_set.X
	y_train = train_set.y
	X_val = valid_set.X
	y_val = valid_set.y
	X_test = test_set.X
	y_test = test_set.y
	# This function trains the model a full epoch (on the whole dataset)
	def train_epoch(X,y,LR):
		
		loss = 0
		batches = len(X)/batch_size
		shuffled_range = range(len(X))
		np.random.shuffle(shuffled_range)
		for i in range(batches):
			tmp_ind = shuffled_range[i*batch_size:(i+1)*batch_size]  
			newloss = train_fn(X[tmp_ind],y[tmp_ind],LR) 
			loss +=newloss	

		loss/=batches		
		return loss
	
	# This function tests the model a full epoch (on the whole dataset)
	def val_epoch(X,y):
		
		err = 0
		loss = 0
		batches = len(X)/batch_size
		
		for i in range(batches):
			new_loss, new_err = val_fn(X[i*batch_size:(i+1)*batch_size], y[i*batch_size:(i+1)*batch_size])
			err += new_err
			loss += new_loss
		
		err = err / batches * 100
		loss /= batches

		return err, loss
	

	best_val_err = 100
	best_epoch = 1
	LR = LR_start
	# We iterate over epochs:
	for epoch in range(1, num_epochs+1):
		start_time = time.time()
		train_loss = train_epoch(X_train,y_train,LR)
		val_err, val_loss = val_epoch(X_val,y_val)

		# test if validation error went down
		if val_err <= best_val_err:
			best_val_err = val_err
			best_epoch = epoch
			test_err, test_loss = val_epoch(X_test,y_test)
			all_params = lasagne.layers.get_all_params(mlp)
			np.savez('{0}/{1}_lr{2}_{3}.npz'.format(method, name,  LR_start, method), *all_params)

		epoch_duration = time.time() - start_time
		
		# Then we print the results for this epoch:
		print("Epoch "+str(epoch)+" of "+str(num_epochs)+" took "+str(epoch_duration)+"s")
		print("  LR:                            "+str(LR))
		print("  training loss:                 "+str(train_loss))
		print("  validation loss:               "+str(val_loss))
		print("  validation error rate:         "+str(val_err)+"%")
		print("  best epoch:                    "+str(best_epoch))
		print("  best validation error rate:    "+str(best_val_err)+"%")
		print("  test loss:                     "+str(test_loss))
		print("  test error rate:               "+str(test_err)+"%") 
		

		with open("{0}/{1}_lr{2}_{3}.txt".format(method,name,  LR_start, method), "a") as myfile:
			myfile.write("{0}  {1:.5f} {2:.5f} {3:.5f} {4:.5f} {5:.5f} {6:.5f} {7:.5f}\n".format(epoch, 
				train_loss, val_loss, test_loss, val_err, test_err, epoch_duration, LR))

		# Learning rate update scheme
		if epoch == 15 or epoch==25:
			LR*=LR_decay
Exemple #5
0
def main(method, LR_start):

    name = "svhn"
    print("dataset = " + str(name))
    print("Method = " + str(method))

    # alpha is the exponential moving average factor
    alpha = .1
    print("alpha = " + str(alpha))
    epsilon = 1e-4
    print("epsilon = " + str(epsilon))

    # Training parameters
    batch_size = 50
    print("batch_size = " + str(batch_size))

    num_epochs = 50
    print("num_epochs = " + str(num_epochs))

    print("LR_start = " + str(LR_start))
    LR_decay = 0.1
    print("LR_decay=" + str(LR_decay))
    # BTW, LR decay might good for the BN moving average...

    activation = lasagne.nonlinearities.rectify

    # number of filters in the first convolutional layer
    K = 64
    print("K=" + str(K))

    print('Building the CNN...')

    # Prepare Theano variables for inputs and targets
    input = T.tensor4('inputs')
    target = T.matrix('targets')
    LR = T.scalar('LR', dtype=theano.config.floatX)

    l_in = lasagne.layers.InputLayer(shape=(None, 3, 32, 32), input_var=input)

    # 128C3-128C3-P2
    l_cnn1 = laq.Conv2DLayer(l_in,
                             num_filters=K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_bn1 = batch_norm.BatchNormLayer(l_cnn1, epsilon=epsilon, alpha=alpha)

    l_nl1 = lasagne.layers.NonlinearityLayer(l_bn1, nonlinearity=activation)

    l_cnn2 = laq.Conv2DLayer(l_nl1,
                             num_filters=K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))

    l_bn2 = batch_norm.BatchNormLayer(l_mp1, epsilon=epsilon, alpha=alpha)

    l_nl2 = lasagne.layers.NonlinearityLayer(l_bn2, nonlinearity=activation)
    # 256C3-256C3-P2
    l_cnn3 = laq.Conv2DLayer(l_nl2,
                             num_filters=2 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_bn3 = batch_norm.BatchNormLayer(l_cnn3, epsilon=epsilon, alpha=alpha)

    l_nl3 = lasagne.layers.NonlinearityLayer(l_bn3, nonlinearity=activation)

    l_cnn4 = laq.Conv2DLayer(l_nl3,
                             num_filters=2 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))

    l_bn4 = batch_norm.BatchNormLayer(l_mp2, epsilon=epsilon, alpha=alpha)

    l_nl4 = lasagne.layers.NonlinearityLayer(l_bn4, nonlinearity=activation)

    # 512C3-512C3-P2
    l_cnn5 = laq.Conv2DLayer(l_nl4,
                             num_filters=4 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_bn5 = batch_norm.BatchNormLayer(l_cnn5, epsilon=epsilon, alpha=alpha)

    l_nl5 = lasagne.layers.NonlinearityLayer(l_bn5, nonlinearity=activation)

    l_cnn6 = laq.Conv2DLayer(l_nl5,
                             num_filters=4 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))

    l_bn6 = batch_norm.BatchNormLayer(l_mp3, epsilon=epsilon, alpha=alpha)

    l_nl6 = lasagne.layers.NonlinearityLayer(l_bn6, nonlinearity=activation)

    # print(cnn.output_shape)

    # 1024FP-1024FP-10FP
    l_dn1 = laq.DenseLayer(l_nl6,
                           nonlinearity=lasagne.nonlinearities.identity,
                           num_units=1024,
                           method=method)

    l_bn7 = batch_norm.BatchNormLayer(l_dn1, epsilon=epsilon, alpha=alpha)

    l_nl7 = lasagne.layers.NonlinearityLayer(l_bn7, nonlinearity=activation)

    l_dn2 = laq.DenseLayer(l_nl7,
                           nonlinearity=lasagne.nonlinearities.identity,
                           num_units=1024,
                           method=method)

    l_bn8 = batch_norm.BatchNormLayer(l_dn2, epsilon=epsilon, alpha=alpha)

    l_nl8 = lasagne.layers.NonlinearityLayer(l_bn8, nonlinearity=activation)

    l_dn3 = laq.DenseLayer(l_nl8,
                           nonlinearity=lasagne.nonlinearities.identity,
                           num_units=10,
                           method=method)

    l_out = batch_norm.BatchNormLayer(l_dn3, epsilon=epsilon, alpha=alpha)

    train_output = lasagne.layers.get_output(l_out, deterministic=False)

    # squared hinge loss
    loss = T.mean(T.sqr(T.maximum(0., 1. - target * train_output)))

    if method != "FPN":
        # W updates
        W = lasagne.layers.get_all_params(l_out, quantized=True)
        W_grads = laq.compute_grads(loss, l_out)
        updates = optimizer.adam(loss_or_grads=W_grads,
                                 params=W,
                                 learning_rate=LR)
        updates = laq.clipping_scaling(updates, l_out)

        # other parameters updates
        params = lasagne.layers.get_all_params(l_out,
                                               trainable=True,
                                               quantized=False)
        updates = OrderedDict(updates.items() + optimizer.adam(
            loss_or_grads=loss, params=params, learning_rate=LR).items())

        ## update 2nd moment, can get from the adam optimizer also
        ternary_weights = laq.get_quantized_weights(loss, l_out)
        updates2 = OrderedDict()
        idx = 0
        tt_tag = lasagne.layers.get_all_params(l_out, tt=True)
        for tt_tag_temp in tt_tag:
            updates2[tt_tag_temp] = ternary_weights[idx]
            idx = idx + 1
        updates = OrderedDict(updates.items() + updates2.items())

        ## update 2nd momentum
        updates3 = OrderedDict()
        acc_tag = lasagne.layers.get_all_params(l_out, acc=True)
        idx = 0
        beta2 = 0.999
        for acc_tag_temp in acc_tag:
            updates3[acc_tag_temp] = acc_tag_temp * beta2 + W_grads[
                idx] * W_grads[idx] * (1 - beta2)
            idx = idx + 1

        updates = OrderedDict(updates.items() + updates3.items())

    else:
        params = lasagne.layers.get_all_params(l_out, trainable=True)
        updates = optimizer.adam(loss_or_grads=loss,
                                 params=params,
                                 learning_rate=LR)

    test_output = lasagne.layers.get_output(l_out, deterministic=True)

    test_loss = T.mean(T.sqr(T.maximum(0., 1. - target * test_output)))
    test_err = T.mean(T.neq(T.argmax(test_output, axis=1),
                            T.argmax(target, axis=1)),
                      dtype=theano.config.floatX)

    train_fn = theano.function([input, target, LR], loss, updates=updates)

    val_fn = theano.function([input, target], [test_loss, test_err])

    ## load data
    print('Loading SVHN dataset')

    train_set = SVHN(
        which_set='splitted_train',
        # which_set= 'valid',
        path="${SVHN_LOCAL_PATH}",
        axes=['b', 'c', 0, 1])

    valid_set = SVHN(which_set='valid',
                     path="${SVHN_LOCAL_PATH}",
                     axes=['b', 'c', 0, 1])

    test_set = SVHN(which_set='test',
                    path="${SVHN_LOCAL_PATH}",
                    axes=['b', 'c', 0, 1])

    # bc01 format
    # print train_set.X.shape
    train_set.X = np.reshape(train_set.X, (-1, 3, 32, 32))
    valid_set.X = np.reshape(valid_set.X, (-1, 3, 32, 32))
    test_set.X = np.reshape(test_set.X, (-1, 3, 32, 32))

    train_set.y = np.array(train_set.y).flatten()
    valid_set.y = np.array(valid_set.y).flatten()
    test_set.y = np.array(test_set.y).flatten()

    # Onehot the targets
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    print('Training...')

    X_train = train_set.X
    y_train = train_set.y
    X_val = valid_set.X
    y_val = valid_set.y
    X_test = test_set.X
    y_test = test_set.y

    # This function trains the model a full epoch (on the whole dataset)
    def train_epoch(X, y, LR):

        loss = 0
        batches = len(X) / batch_size
        # move shuffle here to save memory
        # k = 5
        # batches = int(batches/k)*k
        shuffled_range = range(len(X))
        np.random.shuffle(shuffled_range)

        for i in range(batches):
            tmp_ind = shuffled_range[i * batch_size:(i + 1) * batch_size]
            newloss = train_fn(X[tmp_ind], y[tmp_ind], LR)
            loss += newloss
        loss /= batches
        return loss

    # This function tests the model a full epoch (on the whole dataset)
    def val_epoch(X, y):

        err = 0
        loss = 0
        batches = len(X) / batch_size

        for i in range(batches):
            new_loss, new_err = val_fn(X[i * batch_size:(i + 1) * batch_size],
                                       y[i * batch_size:(i + 1) * batch_size])
            err += new_err
            loss += new_loss

        err = err / batches * 100
        loss /= batches

        return err, loss

    best_val_err = 100
    best_epoch = 1
    LR = LR_start
    # We iterate over epochs:
    for epoch in range(1, num_epochs + 1):

        start_time = time.time()
        train_loss = train_epoch(X_train, y_train, LR)

        val_err, val_loss = val_epoch(X_val, y_val)

        # test if validation error went down
        if val_err <= best_val_err:

            best_val_err = val_err
            best_epoch = epoch

            test_err, test_loss = val_epoch(X_test, y_test)

        epoch_duration = time.time() - start_time

        # Then we print the results for this epoch:
        print("Epoch " + str(epoch) + " of " + str(num_epochs) + " took " +
              str(epoch_duration) + "s")
        print("  LR:                            " + str(LR))
        print("  training loss:                 " + str(train_loss))
        print("  validation loss:               " + str(val_loss))
        print("  validation error rate:         " + str(val_err) + "%")
        print("  best epoch:                    " + str(best_epoch))
        print("  best validation error rate:    " + str(best_val_err) + "%")
        print("  test loss:                     " + str(test_loss))
        print("  test error rate:               " + str(test_err) + "%")

        with open(
                "{0}/{1}_lr{2}_{3}.txt".format(method, name, LR_start, method),
                "a") as myfile:
            myfile.write(
                "{0}  {1:.5f} {2:.5f} {3:.5f} {4:.5f} {5:.5f} {6:.5f} {7:.5f}\n"
                .format(epoch, train_loss, val_loss, test_loss, val_err,
                        test_err, epoch_duration, LR))

        ## Learning rate update scheme
        if epoch == 15 or epoch == 25:
            LR *= LR_decay
def main(method,LR_start):
	
	name = "cifar100"
	print("dataset = "+str(name))

	print("Method = "+str(method))

	# alpha is the exponential moving average factor
	alpha = .1
	print("alpha = "+str(alpha))
	epsilon = 1e-4
	print("epsilon = "+str(epsilon))
	
	# Training parameters
	batch_size = 100
	print("batch_size = "+str(batch_size))
	
	num_epochs = 200
	print("num_epochs = "+str(num_epochs))

	print("LR_start = "+str(LR_start))
	LR_decay = 0.5
	print("LR_decay="+str(LR_decay))

	activation = lasagne.nonlinearities.rectify
	

	train_set_size = 45000
	print("train_set_size = "+str(train_set_size))
	
	print('Loading CIFAR-100 dataset...')
	
	preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/preprocessor.pkl")
	train_set = ZCA_Dataset(
		preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=0, stop = train_set_size)
	valid_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=45000, stop = 50000)  
	test_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/test.pkl"), 
		preprocessor = preprocessor)
		
	# bc01 format
	train_set.X = train_set.X.reshape(-1,3,32,32)
	valid_set.X = valid_set.X.reshape(-1,3,32,32)
	test_set.X = test_set.X.reshape(-1,3,32,32)
	
	# flatten targets
	train_set.y = np.int32(np.hstack(train_set.y))
	valid_set.y = np.int32(np.hstack(valid_set.y))
	test_set.y = np.int32(np.hstack(test_set.y))
   

	print('Building the CNN...') 
	
	# Prepare Theano variables for inputs and targets
	input = T.tensor4('inputs')
	target = T.ivector('targets')
	LR = T.scalar('LR', dtype=theano.config.floatX)

	l_in = lasagne.layers.InputLayer(
			shape=(None, 3, 32, 32),
			input_var=input)
	
	# 128C3-128C3-P2             
	l_cnn1 = laq.Conv2DLayer(
			l_in, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)

	l_bn1 = batch_norm.BatchNormLayer(
			l_cnn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl1 = lasagne.layers.NonlinearityLayer(
			l_bn1,
			nonlinearity = activation)

	l_cnn2 = laq.Conv2DLayer(
			l_nl1, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))
	
	l_bn2 = batch_norm.BatchNormLayer(
			l_mp1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl2 = lasagne.layers.NonlinearityLayer(
			l_bn2,
			nonlinearity = activation)			
	# 256C3-256C3-P2             
	l_cnn3 = laq.Conv2DLayer(
			l_nl2, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn3 = batch_norm.BatchNormLayer(
			l_cnn3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl3 = lasagne.layers.NonlinearityLayer(
			l_bn3,
			nonlinearity = activation)
			
	l_cnn4 = laq.Conv2DLayer(
			l_nl3, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))
	
	l_bn4 = batch_norm.BatchNormLayer(
			l_mp2,
			epsilon=epsilon, 
			alpha=alpha)
	
	l_nl4 = lasagne.layers.NonlinearityLayer(
			l_bn4,
			nonlinearity = activation)

	# 512C3-512C3-P2              
	l_cnn5 = laq.Conv2DLayer(
			l_nl4, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn5 = batch_norm.BatchNormLayer(
			l_cnn5,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl5 = lasagne.layers.NonlinearityLayer(
			l_bn5,
			nonlinearity = activation)
				  
	l_cnn6 = laq.Conv2DLayer(
			l_nl5, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))
	
	l_bn6 = batch_norm.BatchNormLayer(
			l_mp3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl6 = lasagne.layers.NonlinearityLayer(
			l_bn6,
			nonlinearity = activation)

	# print(cnn.output_shape)
	
	# 1024FP-1024FP-10FP            
	l_dn1 = laq.DenseLayer(
				l_nl6, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn7 = batch_norm.BatchNormLayer(
			l_dn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl7 = lasagne.layers.NonlinearityLayer(
			l_bn7,
			nonlinearity = activation)

	l_dn2 = laq.DenseLayer(
				l_nl7, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn8 = batch_norm.BatchNormLayer(
			l_dn2,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl8 = lasagne.layers.NonlinearityLayer(
			l_bn8,
			nonlinearity = activation)

	l_dn3 = laq.DenseLayer(
				l_nl8, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=100,
				method = method)      

	l_out = lasagne.layers.NonlinearityLayer(l_dn3, nonlinearity=lasagne.nonlinearities.softmax) 



	train_output = lasagne.layers.get_output(l_out, deterministic=False)
	loss = categorical_crossentropy(train_output, target).mean()


	if method!="FPN":
		# W updates
		W = lasagne.layers.get_all_params(l_out, quantized=True)
		W_grads = laq.compute_grads(loss,l_out)
		updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
		updates = laq.clipping_scaling(updates,l_out)
		
		# other parameters updates
		params = lasagne.layers.get_all_params(l_out, trainable=True, quantized=False)
		updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())

		## update 2nd moment, can get from the adam optimizer also
		ternary_weights = laq.get_quantized_weights(loss, l_out)
		updates2 = OrderedDict()
		idx = 0
		tt_tag = lasagne.layers.get_all_params(l_out, tt=True)	
		for tt_tag_temp in tt_tag:
			updates2[tt_tag_temp]= ternary_weights[idx]
			idx = idx+1
		updates = OrderedDict(updates.items() + updates2.items())

		## update 2nd momentum
		updates3 = OrderedDict()
		acc_tag = lasagne.layers.get_all_params(l_out, acc=True)	
		idx = 0
		beta2 = 0.999   
		for acc_tag_temp in acc_tag:
			updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
			idx = idx+1

		updates = OrderedDict(updates.items() + updates3.items())	


	else:
		params = lasagne.layers.get_all_params(l_out, trainable=True)
		updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)

	test_output = lasagne.layers.get_output(l_out, deterministic=True)
	test_loss = categorical_crossentropy(test_output, target).mean()
	test_err = T.mean(T.neq(T.argmax(test_output, axis=1), target),dtype=theano.config.floatX)

	train_fn = theano.function([input, target, LR], loss, updates=updates)
	val_fn = theano.function([input, target], [test_loss, test_err])

	print('Training...')
	

	X_train = train_set.X
	y_train = train_set.y
	X_val = valid_set.X
	y_val = valid_set.y
	X_test = test_set.X
	y_test = test_set.y
	# This function trains the model a full epoch (on the whole dataset)
	def train_epoch(X,y,LR):
		
		loss = 0
		batches = len(X)/batch_size
		shuffled_range = range(len(X))
		np.random.shuffle(shuffled_range)

		for i in range(batches):
			tmp_ind = shuffled_range[i*batch_size:(i+1)*batch_size] 
			newloss = train_fn(X[tmp_ind],y[tmp_ind],LR) 
			loss +=newloss				

		loss/=batches		
		return loss
	
	# This function tests the model a full epoch (on the whole dataset)
	def val_epoch(X,y):
		
		err = 0
		loss = 0
		batches = len(X)/batch_size
		
		for i in range(batches):
			new_loss, new_err = val_fn(X[i*batch_size:(i+1)*batch_size], y[i*batch_size:(i+1)*batch_size])
			err += new_err
			loss += new_loss
		
		err = err / batches * 100
		loss /= batches

		return err, loss
	

	best_val_err = 100
	best_epoch = 1
	LR = LR_start
	# We iterate over epochs:
	for epoch in range(1, num_epochs+1):
		
		start_time = time.time()
		train_loss = train_epoch(X_train,y_train,LR)
		
		val_err, val_loss = val_epoch(X_val,y_val)
		
		# test if validation error went down
		if val_err <= best_val_err:
			
			best_val_err = val_err
			best_epoch = epoch
			test_err, test_loss = val_epoch(X_test,y_test)

		epoch_duration = time.time() - start_time
		
		# Then we print the results for this epoch:
		print("Epoch "+str(epoch)+" of "+str(num_epochs)+" took "+str(epoch_duration)+"s")
		print("  LR:                            "+str(LR))
		print("  training loss:                 "+str(train_loss))
		print("  validation loss:               "+str(val_loss))
		print("  validation error rate:         "+str(val_err)+"%")
		print("  best epoch:                    "+str(best_epoch))
		print("  best validation error rate:    "+str(best_val_err)+"%")
		print("  test loss:                     "+str(test_loss))
		print("  test error rate:               "+str(test_err)+"%") 
		

		with open("{0}/{1}_lr{2}_{3}.txt".format(method, name,  LR_start, method), "a") as myfile:
			myfile.write("{0}  {1:.5f} {2:.5f} {3:.5f} {4:.5f} {5:.5f} {6:.5f} {7:.5f}\n".format(epoch, 
				train_loss, val_loss, test_loss, val_err, test_err, epoch_duration, LR))


		if epoch % 15 ==0:
			LR*=LR_decay
def main(method, LR_start, Binarize_weight_only):

    name = "svhn"
    print("dataset = " + str(name))

    print("Binarize_weight_only=" + str(Binarize_weight_only))

    print("Method = " + str(method))

    # alpha is the exponential moving average factor
    alpha = .1
    print("alpha = " + str(alpha))
    epsilon = 1e-4
    print("epsilon = " + str(epsilon))

    # Training parameters
    batch_size = 50
    print("batch_size = " + str(batch_size))

    num_epochs = 50
    print("num_epochs = " + str(num_epochs))

    print("LR_start = " + str(LR_start))
    LR_decay = 0.1
    print("LR_decay=" + str(LR_decay))
    # BTW, LR decay might good for the BN moving average...

    if Binarize_weight_only == "w":
        activation = lasagne.nonlinearities.rectify
    else:
        activation = lab.binary_tanh_unit
    print("activation = " + str(activation))

    ## number of filters in the first convolutional layer
    K = 64
    print("K=" + str(K))

    print('Building the CNN...')

    # Prepare Theano variables for inputs and targets
    input = T.tensor4('inputs')
    target = T.matrix('targets')
    LR = T.scalar('LR', dtype=theano.config.floatX)

    l_in = lasagne.layers.InputLayer(shape=(None, 3, 32, 32), input_var=input)

    # 128C3-128C3-P2
    l_cnn1 = lab.Conv2DLayer(l_in,
                             num_filters=K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_bn1 = batch_norm.BatchNormLayer(l_cnn1, epsilon=epsilon, alpha=alpha)

    l_nl1 = lasagne.layers.NonlinearityLayer(l_bn1, nonlinearity=activation)

    l_cnn2 = lab.Conv2DLayer(l_nl1,
                             num_filters=K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))

    l_bn2 = batch_norm.BatchNormLayer(l_mp1, epsilon=epsilon, alpha=alpha)

    l_nl2 = lasagne.layers.NonlinearityLayer(l_bn2, nonlinearity=activation)
    # 256C3-256C3-P2
    l_cnn3 = lab.Conv2DLayer(l_nl2,
                             num_filters=2 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_bn3 = batch_norm.BatchNormLayer(l_cnn3, epsilon=epsilon, alpha=alpha)

    l_nl3 = lasagne.layers.NonlinearityLayer(l_bn3, nonlinearity=activation)

    l_cnn4 = lab.Conv2DLayer(l_nl3,
                             num_filters=2 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))

    l_bn4 = batch_norm.BatchNormLayer(l_mp2, epsilon=epsilon, alpha=alpha)

    l_nl4 = lasagne.layers.NonlinearityLayer(l_bn4, nonlinearity=activation)

    # 512C3-512C3-P2
    l_cnn5 = lab.Conv2DLayer(l_nl4,
                             num_filters=4 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_bn5 = batch_norm.BatchNormLayer(l_cnn5, epsilon=epsilon, alpha=alpha)

    l_nl5 = lasagne.layers.NonlinearityLayer(l_bn5, nonlinearity=activation)

    l_cnn6 = lab.Conv2DLayer(l_nl5,
                             num_filters=4 * K,
                             filter_size=(3, 3),
                             pad=1,
                             nonlinearity=lasagne.nonlinearities.identity,
                             method=method)

    l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))

    l_bn6 = batch_norm.BatchNormLayer(l_mp3, epsilon=epsilon, alpha=alpha)

    l_nl6 = lasagne.layers.NonlinearityLayer(l_bn6, nonlinearity=activation)

    # print(cnn.output_shape)

    # 1024FP-1024FP-10FP
    l_dn1 = lab.DenseLayer(l_nl6,
                           nonlinearity=lasagne.nonlinearities.identity,
                           num_units=1024,
                           method=method)

    l_bn7 = batch_norm.BatchNormLayer(l_dn1, epsilon=epsilon, alpha=alpha)

    l_nl7 = lasagne.layers.NonlinearityLayer(l_bn7, nonlinearity=activation)

    l_dn2 = lab.DenseLayer(l_nl7,
                           nonlinearity=lasagne.nonlinearities.identity,
                           num_units=1024,
                           method=method)

    l_bn8 = batch_norm.BatchNormLayer(l_dn2, epsilon=epsilon, alpha=alpha)

    l_nl8 = lasagne.layers.NonlinearityLayer(l_bn8, nonlinearity=activation)

    l_dn3 = lab.DenseLayer(l_nl8,
                           nonlinearity=lasagne.nonlinearities.identity,
                           num_units=10,
                           method=method)

    l_out = batch_norm.BatchNormLayer(l_dn3, epsilon=epsilon, alpha=alpha)

    train_output = lasagne.layers.get_output(l_out, deterministic=False)

    # squared hinge loss
    loss = T.mean(T.sqr(T.maximum(0., 1. - target * train_output)))

    if method != "FPN":
        # W updates
        W = lasagne.layers.get_all_params(l_out, binary=True)
        W_grads = lab.compute_grads(loss, l_out)
        updates = optimizer.adam(loss_or_grads=W_grads,
                                 params=W,
                                 learning_rate=LR)
        updates = lab.clipping_scaling(updates, l_out)

        # other parameters updates
        params = lasagne.layers.get_all_params(l_out,
                                               trainable=True,
                                               binary=False)
        updates = OrderedDict(updates.items() + optimizer.adam(
            loss_or_grads=loss, params=params, learning_rate=LR).items())

        ## update 2nd moment, can get from the adam optimizer also
        updates3 = OrderedDict()
        acc_tag = lasagne.layers.get_all_params(l_out, acc=True)
        idx = 0
        beta2 = 0.999
        for acc_tag_temp in acc_tag:
            updates3[acc_tag_temp] = acc_tag_temp * beta2 + W_grads[
                idx] * W_grads[idx] * (1 - beta2)
            idx = idx + 1

        updates = OrderedDict(updates.items() + updates3.items())
    else:
        params = lasagne.layers.get_all_params(l_out, trainable=True)
        updates = optimizer.adam(loss_or_grads=loss,
                                 params=params,
                                 learning_rate=LR)

    test_output = lasagne.layers.get_output(l_out, deterministic=True)
    test_loss = T.mean(T.sqr(T.maximum(0., 1. - target * test_output)))
    test_err = T.mean(T.neq(T.argmax(test_output, axis=1),
                            T.argmax(target, axis=1)),
                      dtype=theano.config.floatX)

    # Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
    # and returning the corresponding training loss:
    train_fn = theano.function([input, target, LR], loss, updates=updates)
    val_fn = theano.function([input, target], [test_loss, test_err])

    ## load data
    print('Loading SVHN dataset')

    train_set = SVHN(
        which_set='splitted_train',
        # which_set= 'valid',
        path="${SVHN_LOCAL_PATH}",
        axes=['b', 'c', 0, 1])

    valid_set = SVHN(which_set='valid',
                     path="${SVHN_LOCAL_PATH}",
                     axes=['b', 'c', 0, 1])

    test_set = SVHN(which_set='test',
                    path="${SVHN_LOCAL_PATH}",
                    axes=['b', 'c', 0, 1])

    # bc01 format
    # print train_set.X.shape
    train_set.X = np.reshape(train_set.X, (-1, 3, 32, 32))
    valid_set.X = np.reshape(valid_set.X, (-1, 3, 32, 32))
    test_set.X = np.reshape(test_set.X, (-1, 3, 32, 32))

    train_set.y = np.array(train_set.y).flatten()
    valid_set.y = np.array(valid_set.y).flatten()
    test_set.y = np.array(test_set.y).flatten()

    # Onehot the targets
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    print('Training...')

    # ipdb.set_trace()
    lab.train(name, method, train_fn, val_fn, batch_size, LR_start, LR_decay,
              num_epochs, train_set.X, train_set.y, valid_set.X, valid_set.y,
              test_set.X, test_set.y)
Exemple #8
0
def main(method,LR_start,Binarize_weight_only):
	
	name = "cifar"
	print("dataset = "+str(name))

	print("Binarize_weight_only="+str(Binarize_weight_only))

	print("Method = "+str(method))

	# alpha is the exponential moving average factor
	alpha = .1
	print("alpha = "+str(alpha))
	epsilon = 1e-4
	print("epsilon = "+str(epsilon))
	
	# Training parameters
	batch_size = 50
	print("batch_size = "+str(batch_size))
	
	num_epochs = 200
	print("num_epochs = "+str(num_epochs))

	print("LR_start = "+str(LR_start))
	LR_decay = 0.5
	print("LR_decay="+str(LR_decay))

	if Binarize_weight_only =="w":
		activation = lasagne.nonlinearities.rectify
	else:
		activation = lab.binary_tanh_unit
	print("activation = "+ str(activation))
	

	train_set_size = 45000
	print("train_set_size = "+str(train_set_size))
	
	print('Loading CIFAR-10 dataset...')
	
	preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl")
	train_set = ZCA_Dataset(
		preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=0, stop = train_set_size)
	valid_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=45000, stop = 50000)  
	test_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"), 
		preprocessor = preprocessor)
		
	# bc01 format
	train_set.X = train_set.X.reshape(-1,3,32,32)
	valid_set.X = valid_set.X.reshape(-1,3,32,32)
	test_set.X = test_set.X.reshape(-1,3,32,32)
	
	# flatten targets
	train_set.y = np.hstack(train_set.y)
	valid_set.y = np.hstack(valid_set.y)
	test_set.y = np.hstack(test_set.y)

   
	# Onehot the targets
	train_set.y = np.float32(np.eye(10)[train_set.y])    
	valid_set.y = np.float32(np.eye(10)[valid_set.y])
	test_set.y = np.float32(np.eye(10)[test_set.y])
	
	# for hinge loss
	train_set.y = 2* train_set.y - 1.
	valid_set.y = 2* valid_set.y - 1.
	test_set.y = 2* test_set.y - 1.

	print('Building the CNN...') 
	
	# Prepare Theano variables for inputs and targets
	input = T.tensor4('inputs')
	target = T.matrix('targets')
	LR = T.scalar('LR', dtype=theano.config.floatX)

	l_in = lasagne.layers.InputLayer(
			shape=(None, 3, 32, 32),
			input_var=input)
	
	# 128C3-128C3-P2             
	l_cnn1 = lab.Conv2DLayer(
			l_in, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)

	l_bn1 = batch_norm.BatchNormLayer(
			l_cnn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl1 = lasagne.layers.NonlinearityLayer(
			l_bn1,
			nonlinearity = activation)

	l_cnn2 = lab.Conv2DLayer(
			l_nl1, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))
	
	l_bn2 = batch_norm.BatchNormLayer(
			l_mp1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl2 = lasagne.layers.NonlinearityLayer(
			l_bn2,
			nonlinearity = activation)			
	# 256C3-256C3-P2             
	l_cnn3 = lab.Conv2DLayer(
			l_nl2, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn3 = batch_norm.BatchNormLayer(
			l_cnn3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl3 = lasagne.layers.NonlinearityLayer(
			l_bn3,
			nonlinearity = activation)
			
	l_cnn4 = lab.Conv2DLayer(
			l_nl3, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))
	
	l_bn4 = batch_norm.BatchNormLayer(
			l_mp2,
			epsilon=epsilon, 
			alpha=alpha)
	
	l_nl4 = lasagne.layers.NonlinearityLayer(
			l_bn4,
			nonlinearity = activation)

	# 512C3-512C3-P2              
	l_cnn5 = lab.Conv2DLayer(
			l_nl4, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn5 = batch_norm.BatchNormLayer(
			l_cnn5,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl5 = lasagne.layers.NonlinearityLayer(
			l_bn5,
			nonlinearity = activation)
				  
	l_cnn6 = lab.Conv2DLayer(
			l_nl5, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))
	
	l_bn6 = batch_norm.BatchNormLayer(
			l_mp3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl6 = lasagne.layers.NonlinearityLayer(
			l_bn6,
			nonlinearity = activation)

	# print(cnn.output_shape)
	
	# 1024FP-1024FP-10FP            
	l_dn1 = lab.DenseLayer(
				l_nl6, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn7 = batch_norm.BatchNormLayer(
			l_dn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl7 = lasagne.layers.NonlinearityLayer(
			l_bn7,
			nonlinearity = activation)

	l_dn2 = lab.DenseLayer(
				l_nl7, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn8 = batch_norm.BatchNormLayer(
			l_dn2,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl8 = lasagne.layers.NonlinearityLayer(
			l_bn8,
			nonlinearity = activation)

	l_dn3 = lab.DenseLayer(
				l_nl8, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=10,
				method = method)      
				  
	l_out = batch_norm.BatchNormLayer(
			l_dn3,
			epsilon=epsilon, 
			alpha=alpha)

	train_output = lasagne.layers.get_output(l_out, deterministic=False)
	
	# squared hinge loss
	loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
	
	if method!="FPN":
		# W updates
		W = lasagne.layers.get_all_params(l_out, binary=True)
		W_grads = lab.compute_grads(loss,l_out)
		updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
		updates = lab.clipping_scaling(updates,l_out)
		
		# other parameters updates
		params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False)
		updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())

		## update 2nd moment, can get from the adam optimizer also
		updates3 = OrderedDict()
		acc_tag = lasagne.layers.get_all_params(l_out, acc=True)	
		idx = 0
		beta2 = 0.999   
		for acc_tag_temp in acc_tag:
			updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
			idx = idx+1

		updates = OrderedDict(updates.items() + updates3.items())	
	else:
		params = lasagne.layers.get_all_params(l_out, trainable=True)
		updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)

	test_output = lasagne.layers.get_output(l_out, deterministic=True)
	test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
	test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
	
	# Compile a function performing a training step on a mini-batch (by giving the updates dictionary) 
	# and returning the corresponding training loss:
	train_fn = theano.function([input, target, LR], loss, updates=updates)
	val_fn = theano.function([input, target], [test_loss, test_err])

	print('Training...')
	
	lab.train(
			name, method,
			train_fn,val_fn,
			batch_size,
			LR_start,LR_decay,
			num_epochs,
			train_set.X,train_set.y,
			valid_set.X,valid_set.y,
			test_set.X,test_set.y)