Exemple #1
0
def manual_nodev(parcel_rejections, parcels):
    df1 = parcels.to_frame(['x', 'y']).dropna(subset=['x', 'y'])
    df2 = parcel_rejections.to_frame(['lng', 'lat'])
    df2 = df2[parcel_rejections.state == "denied"]
    df2 = df2[["lng", "lat"]]  # need to change the order
    ind = nearest_neighbor(df1, df2)

    s = pd.Series(False, parcels.index)
    s.loc[ind.flatten()] = True
    return s.astype('int')
Exemple #2
0
def costar(store, parcels):
    df = pd.read_csv(os.path.join(misc.data_dir(), '2015_08_29_costar.csv'))

    df["PropertyType"] = df.PropertyType.replace("General Retail", "Retail")
    df = df[df.PropertyType.isin(["Office", "Retail", "Industrial"])]

    df["costar_rent"] = df["Average Weighted Rent"].astype('float')
    df["year_built"] = df["Year Built"].fillna(1980)

    df = df.dropna(subset=["costar_rent", "Latitude", "Longitude"])

    # now assign parcel id
    df["parcel_id"] = nearest_neighbor(
        parcels.to_frame(['x', 'y']).dropna(subset=['x', 'y']),
        df[['Longitude', 'Latitude']])

    return df