Exemple #1
0
def process_training_xml(weibo_emotion, weibo_content, weibo_content_emotion):
    bow = []
    map(
        lambda weibo: map(
            lambda sentence: map(lambda each: bow.append(each), sentence),
            weibo), weibo_content)
    bow = list(set(bow))
    # word to vec
    train_mat, train_cat = convert_to_mat_and_cat(bow, weibo_content,
                                                  weibo_content_emotion)

    # first_level_mat , first_level_cat : 有无感情色彩(1,-1有,0无)
    first_level_mat = train_mat
    first_level_cat = map(lambda each: _turn_to_same(each, -1, 1), train_cat)
    l1_p0_vect, l1_p1_vect, p_emotion = bayes.trainNB0(first_level_mat,
                                                       first_level_cat)

    # second_level_mat , second_level_cat : 感情色彩积极消极(1积极-1消极,归为1积极,0消极)
    train_combile = zip(train_mat, train_cat)
    second_level_tmp = filter(lambda each: each[1] != 0, train_combile)
    second_level_mat = map(lambda each: each[0], second_level_tmp)
    second_level_cat = map(lambda each: each[1], second_level_tmp)
    second_level_cat = map(lambda each: _turn_to_same(each, -1, 0),
                           second_level_cat)
    l2_p0_vect, l2_p1_vect, p_positive = bayes.trainNB0(
        second_level_mat, second_level_cat)

    return bow, l1_p0_vect, l1_p1_vect, p_emotion, l2_p0_vect, l2_p1_vect, p_positive
Exemple #2
0
def main():
    postingList, classVec = bayes.loadDataSet()
    vlist = bayes.create_vacabulary_list(postingList)
    tranmat = []
    for row in postingList:
        tranmat.append(bayes.setOfWords2Vec(vlist, row))
    print bayes.trainNB0(tranmat, classVec)
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # 导入并解析文本
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    # 随机构建训练集
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    # 对测试集分类
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is:', float(errorCount) / len(testSet)
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = textParse(open('xxx/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('xxx/%d,txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWord2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
Exemple #5
0
def spamTest():
    docList = []
    classList =[]
    fullText = []
    for i in range(1, 26):
        wordList = bayes.textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(open('email/ham/%d.txt' % i,errors='ignore').read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    dataSet = list(range(50))
    testSet = []
    for i in range(10):
        randIndex = int(np.random.uniform(0, len(dataSet)))
        testSet.append(dataSet[randIndex])
        del(dataSet[randIndex])
    trainMat = []
    trainClasses = []
    for doc in dataSet:
        trainMat.append(bayes.bagOfWord2Vec(vocabList, docList[doc]))
        trainClasses.append(classList[doc])
    pAbusive, p1Vect, p0Vect = bayes.trainNB0(trainMat, trainClasses)
    errorCount = 0.0
    for i in testSet:
        vec2Classify = bayes.bagOfWord2Vec(vocabList, docList[i])
        if bayes.classifyNB(vec2Classify, p1Vect, p0Vect, pAbusive) != classList[i]:
            errorCount += 1
    return errorCount/10
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = textParse(open('./email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('./email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocalList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClass = []
    for docIndex in trainingSet:
        trainMat.append(bayes.addWordInList(vocalList, docList[docIndex]))
        trainClass.append(classList[docIndex])
    p0V, p1V, ps = bayes.trainNB0(array(trainMat), array(trainClass))
    errorCount = 0
    for doc in testSet:
        wordV = bayes.addWordInList(vocalList, docList[doc])
        if bayes.classifyNB(array(wordV), p0V, p1V, ps) != classList[doc]:
            errorCount += 1
    print 'err count is %d' % errorCount
def spamTest():
    docList = []; classList=[]; fullText=[]
    for i in range(1, 26):
        wordList = textParse(open('./email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('./email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocalList = bayes.createVocabList(docList)
    trainingSet = range(50); testSet=[]
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[];trainClass=[];
    for docIndex in trainingSet:
        trainMat.append(bayes.addWordInList(vocalList, docList[docIndex]))
        trainClass.append(classList[docIndex])
    p0V,p1V,ps = bayes.trainNB0(array(trainMat), array(trainClass))
    errorCount = 0
    for doc in testSet:
        wordV = bayes.addWordInList(vocalList, docList[doc])
        if bayes.classifyNB(array(wordV), p0V, p1V, ps) != classList[doc]:
            errorCount+=1
    print 'err count is %d' % errorCount
def test_train():
    listOposts,listClasses=bayes.loadDataSet()
    myVocabList=bayes.createVocabList(listOposts)
    trainMat=[]
    for postinDoc in listOposts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList,postinDoc))
    p0v,p1v,pab=bayes.trainNB0(trainMat,listClasses)

    print p1v
Exemple #9
0
    def test_train_nb(self):
        data_set, listClasses = bayes.loadDataSet()
        vocab_list = bayes.createVocabList(data_set)
        print("\n vocab_list == %s" % (vocab_list))

        trainMat = []
        for postinDoc in data_set:
            trainMat.append(bayes.setOfWords2Vec(vocab_list, postinDoc))

        p0Vect, p1Vect, pAbusive = bayes.trainNB0(trainMat, listClasses)
        print("\n p0Vect == %s\n p1Vect == %s\n pAbusive == %s\n" %
              (p0Vect, p1Vect, pAbusive))
Exemple #10
0
def localWords(feed1, feed0):
    import feedparser
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    # print('minlen=%d'%minLen)
    for i in range(minLen):
        # visit one rss source every time
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        # visit rss 0
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

        # remove most frequent words
        vocabList = bayes.createVocabList(docList)
        top30words = calcMostFreq(vocabList, fullText)
        for pairW in top30words:
            if pairW[0] in vocabList:
                vocabList.remove(pairW[0])
        trainingSet = list(range(2 * minLen))
        testSet = []
        for i in range(20):
            randIdx = int(random.uniform(0, len(trainingSet)))
            testSet.append(trainingSet[randIdx])
            del (trainingSet[randIdx])

    trainMat = []
    trainClasses = []
    for docIdx in trainingSet:
        # print("doc idx:%d, len=%d" %( docIdx, len(docList)))
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIdx]))
        trainClasses.append(classList[docIdx])

    p0V, p1V, pSpam = bayes.trainNB0(numpy.array(trainMat),
                                     numpy.array(trainClasses))

    errorCount = 0
    for docIdx in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIdx])
        if bayes.classifyNB(numpy.array(wordVector), p0V, p1V,
                            pSpam) != classList[docIdx]:
            errorCount += 1
    print('the error rate is: %.2f' % (float(errorCount) / len(testSet)))

    return vocabList, p0V, p1V
def testingNB():
    listOPosts,listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = bayes.trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',bayes.classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',bayes.classifyNB(thisDoc,p0V,p1V,pAb)
Exemple #12
0
def testSimpTrain():
    listOPosts, listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))

    print "trainMat:", trainMat
    print "listClasses:", listClasses
    p0V,p1V,pAb = bayes.trainNB0(trainMat, listClasses)
    print "pAb:",pAb
    print "p0V:",p0V
    print "p1V:",p1V
Exemple #13
0
def testingNB():
    listOPosts, listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = bayes.trainNB0(trainMat, listClasses)

    testEntry = ['love', 'my', 'dalmation', 'stupid']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ', bayes.classifyNB(thisDoc, p0V, p1V, pAb)
    testEntry = ['quit', 'stupid']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ', bayes.classifyNB(thisDoc, p0V, p1V, pAb)
def localWords(feed1, feed0):
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        wordList = st.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        wordList = st.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    vocabList = bayes.createVocabList(docList)

    #remove top frequent words
    top30Words = calcMostFreq(vocabList, fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList: vocabList.remove(pairW[0])

    #build training and testing set
    trainingSet = range(2*minLen)
    testSet = []
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])

    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    #training
    p0V, p1V, pLocal = bayes.trainNB0(array(trainMat), array(trainClasses))

    #testing
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pLocal) != classList[docIndex]:
            errorCount+=1

    print 'the error rate is: ', float(errorCount)/len(testSet)
    return vocabList, p0V, p1V
def testingNB():
    postList, classList = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(postList)
    trainMat = []
    for post in postList:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, post))
    p0V, p1V, pAb = bayes.trainNB0(trainMat, classList)
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = bayes.setOfWords2Vec(myVocabList, testEntry)
    print testEntry, 'classified as: ', bayes.classifyNB(
        thisDoc, p0V, p1V, pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = bayes.setOfWords2Vec(myVocabList, testEntry)
    print testEntry, 'classified as: ', bayes.classifyNB(
        thisDoc, p0V, p1V, pAb)
def spamTest():
    '''
    对贝叶斯垃圾邮件分类器进行自动化处理
    对测试集中的每封邮件进行分类,若邮件分类错误,测错误数加1,最后返回总的错误百分比
    '''
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        #切分,解析数据,并归类为1的类别
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    #创建词汇表
    vocabList = bayes.createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []
    #随机取10个邮件测试
    for i in range(10):
        #random.uniform(x,y)随机产生一个范围为x-y的实数
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    errorDoc = []
    for docIndex in testSet:
        wordVector = bayes.setWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
            errorDoc.append(docList[docIndex])
    print(vocabList)
    print(trainMat)
    print('the errorCount is: ', errorCount)
    print('the testSet length is: ', len(testSet))
    print('the error rate is; ', float(errorCount) / len(testSet))
    print(errorDoc)
def localWord(feed1, feed0):
    docList = []
    classList = []
    fullText = []
    minLength = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLength):
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    vocabList = bayes.createVocabList(docList)
    top30words = calMostFeq(vocabList, fullText)
    for pairW in top30words:
        if (pairW[0] in vocabList):
            vocabList.remove(pairW[0])

    trainingSet = range(2 * minLength)
    testSet = []
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMatrix = []
    trainClass = []

    for docIndex in trainingSet:
        trainMatrix.append(bayes.bagOfWordsToVec(vocabList, docList[docIndex]))
        trainClass.append(classList[docIndex])

    p0V, p1V, pSapm = bayes.trainNB0(trainMatrix, trainClass)

    errorCount = 0

    for docIndex in testSet:
        calculatedClass = bayes.classifyNB(
            bayes.bagOfWordsToVec(vocabList, docList[docIndex]), p0V, p1V,
            pSapm)
        if (calculatedClass != classList[docIndex]):
            errorCount += 1

    print "error rate is: ", float(errorCount) / len(testSet)
    return vocabList, p0V, p1V
Exemple #18
0
def localWords(feed1, feed0):
    import feedparser
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        # 每次访问一条RSS源
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    top30Words = calcMostFreq(vocabList, fullText)

    # 去掉出现频数最高的词
    for pairW in top30Words:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0])

    trainingSet = list(range(2 * minLen))
    testSet = []
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1

    print('the error rate is:', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
def spamTest():
    docList = []
    classList = []
    fullText = []

    # read the mail
    for i in range(1, 26):
        wordlist1 = textParse(open('./email/spam/%d.txt' % i).read())
        docList.append(wordlist1)
        fullText.extend(docList)
        classList.append(1)
        wordlist0 = textParse(open('./email/ham/%d.txt' % i).read())
        docList.append(wordlist0)
        fullText.extend(docList)
        classList.append(0)

    # get the dictionary
    vablist = bayes.createVocablist(docList)

    # Random Test dateset
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMat = []
    trainClasses = []

    # Get the train dateset
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfwords2Vec(vablist, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    pa, p1Vec, p0Vec = bayes.trainNB0(trainMat, trainClasses)

    # test the bayes
    errorCount = 0
    for docIndex in testSet:
        testVec = bayes.setOfwords2Vec(vablist, docList[docIndex])
        result = bayes.classifyNB(testVec, p1Vec, p0Vec, pa)
        if result != classList[docIndex]:
            errorCount += 1
    errorrate = float(errorCount) / len(testSet)
    print "the filter spam mail error rate is %f" % errorrate
def spamTest():
    docList = []
    classList = []
    fullText = []

    # read the mail
    for i in range(1,26):
        wordlist1 = textParse(open('./email/spam/%d.txt' %i).read())
        docList.append(wordlist1)
        fullText.extend(docList)
        classList.append(1)
        wordlist0 = textParse(open('./email/ham/%d.txt' %i).read())
        docList.append(wordlist0)
        fullText.extend(docList)
        classList.append(0)

    # get the dictionary
    vablist = bayes.createVocablist(docList)

    # Random Test dateset
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMat = []
    trainClasses = []

    # Get the train dateset
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfwords2Vec(vablist, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    pa, p1Vec, p0Vec = bayes.trainNB0(trainMat, trainClasses)

    # test the bayes
    errorCount = 0
    for docIndex in testSet:
        testVec = bayes.setOfwords2Vec(vablist, docList[docIndex])
        result = bayes.classifyNB(testVec, p1Vec, p0Vec, pa)
        if result != classList[docIndex]:
            errorCount += 1
    errorrate = float(errorCount) / len(testSet)
    print "the filter spam mail error rate is %f" %errorrate
def spamTest():
    docList = []
    classList = []
    fullText = []

    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    vocabList = docTool.createVocabList(docList)

    trainingSet = range(50)
    testSet = []

    for i in range(10):
        randIndex = int(np.random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])

    trainMat = []
    trainClasses = []

    for docIndex in trainingSet:
        trainMat.append(docTool.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    p0V, p1V, pSpam = bayes.trainNB0(trainMat, trainClasses)

    errorCount = 0

    for docIndex in testSet:
        wordVector = docTool.setOfWords2Vec(vocabList, docList[docIndex])

        if bayes.classifyNB(wordVector, p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1


    print '错误率: ', float(errorCount) / len(testSet)
Exemple #22
0
def spamTest():
    docList = []
    classList = []
    fullText = []

    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    vocabList = docTool.createVocabList(docList)

    trainingSet = range(50)
    testSet = []

    for i in range(10):
        randIndex = int(np.random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMat = []
    trainClasses = []

    for docIndex in trainingSet:
        trainMat.append(docTool.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    p0V, p1V, pSpam = bayes.trainNB0(trainMat, trainClasses)

    errorCount = 0

    for docIndex in testSet:
        wordVector = docTool.setOfWords2Vec(vocabList, docList[docIndex])

        if bayes.classifyNB(wordVector, p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1

    print '错误率: ', float(errorCount) / len(testSet)
Exemple #23
0
def testNB():
    listOPosts, listClasses = bayes.loadDataSet()  #加载数据
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)

    resultLabel = {0: 'Not garbage', 1: 'Garbage'}
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as:',
          resultLabel[bayes.classifyNB(thisDoc, p0V, p1V, pAb)])

    testEntry = ['stupid', 'garbage']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as:',
          resultLabel[bayes.classifyNB(thisDoc, p0V, p1V, pAb)])
Exemple #24
0
def localWords(feed1, feed0):  # 两份RSS文件分别经feedparser解析,得到2个字典
    docList = []  # 一条条帖子组成的List, 帖子拆成了单词
    classList = []  # 标签列表
    fullText = []  # 所有帖子的所有单词组成的List
    # entries条目包含多个帖子,miNLen记录帖子数少的数目,怕越界
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        wordList = bayes.textParse(feed1['entries'][i]['summary'])  # 取出帖子内容,并拆成词
        docList.append(wordList)  # ['12','34'].append(['56','78']) ==> [ ['12','34'], ['56','78'] ]
        fullText.extend(wordList)  # ['12','34'].extend(['56','78']) ==> ['12','34','56','78']
        classList.append(1)  # 纽约的标签是1
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)  # 旧金山的标签是0

    vocabList = bayes.createVocabList(docList)  # 创建词汇表
    # 从fulltext中找出最高频的30个单词,并从vocabList中去除它们
    top30Words = calcMostFreq(vocabList, fullText)
    for (word, count) in top30Words:
        if word in vocabList:
            vocabList.remove(word)

    trainingSet = range(2 * minLen);
    testSet = []  # 创建训练集、测试集
    for i in range(minLen / 10):  # 随机选取10%的数据,建立测试集
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = [];
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))  # 将训练集中的每一条数据,转化为词向量
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(np.array(trainMat), np.array(trainClasses))  # 开始训练

    # 用测试数据,测试分类器的准确性
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
    return vocabList, p0V, p1V
Exemple #25
0
def spamTest():
    """
    将文件夹spam和ham中分别的25篇右键导入解析为词列表,再构建一个测试集与训练集,
    50篇中再随机选10篇作为测试集,其余20篇作为测试集(留存交叉验证)
    :return: 
    """
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = bayes.textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []
    for i in range(10):  #随机选出10篇
        randIndex = int(random.uniform(
            0,
            len(trainingSet)))  #random.uniform(x, y) 方法将随机生成一个实数,它在 [x,y] 范围内。
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  #遍历训练集中所有的文档
        trainMat.append(bayes.bagOfWords2VecMN(vocabList,
                                               docList[docIndex]))  #构建词向量
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat),
                                     array(trainClasses))  #计算分类所需的概率
    errorCount = 0
    for docIndex in testSet:  #遍历测试集
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is :', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
Exemple #26
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # assume we have 25 emails for normal email and spam
        wordList = textParse(
            codecs.open(baseURI + 'email/spam/%d.txt' % i,
                        encoding='ANSI').read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(
            open(baseURI + 'email/ham/%d.txt' % i, encoding='ANSI').read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.create_vocab_list(docList)  #create vocabulary
    trainingSet = list(range(50))
    testSet = []  #create test set
    # this will pop out 10 emails of traning set for testing algorithm randomly
    for i in range(10):
        # np.random.uniform(low, high) draw samples from a uniform distribution
        # The probability density function of the uniform distribution is p(x)=1/(high-low)
        randIndex = int(np.random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  # train the classifier (get probs) trainNB0
        trainMat.append(bagOfwords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(np.array(trainMat),
                                     np.array(trainClasses))
    errorCount = 0
    for docIndex in testSet:  #classify the remaining items
        wordVector = bagOfwords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(np.array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
            print("classification error", docList[docIndex])
    print('the error rate is: ', float(errorCount) / len(testSet))
def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        str=open('email/spam/%d.txt' % i).read()
        print "str"
        print str
        wordList = bayes.textParse(str)
        print "wordlist"
        print wordList
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    print "doclist"
    print len(docList)
    print docList
    print "fulllist"
    print len(fullText)
    print fullText
    print classList

    vocabList = bayes.createVocabList(docList)#create vocabulary
    trainingSet = range(50); testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = bayes.trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print "classification error",docList[docIndex]
    print 'the error rate is: ',float(errorCount)/len(testSet)
Exemple #28
0
def localWords(feed1, feed0):
    import feedparser
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    print feed1['entries']
    print feed0['entries']
    for i in range(minLen):
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)  #NY is class 1
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)  #create vocabulary
    top30Words = calcMostFreq(vocabList, fullText)  #remove top 30 words
    for pairW in top30Words:
        if pairW[0] in vocabList: vocabList.remove(pairW[0])
    trainingSet = list(range(2 * minLen))
    testSet = []  #create test set
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  #train the classifier (get probs) trainNB0
        trainMat.append(bayes.bagOfWord2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:  #classify the remaining items
        wordVector = bayes.bagOfWord2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is: ', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
Exemple #29
0
def spamTest():
    docList = []
    classList = []
    fullText = []

    # parse text from email
    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        #parse text
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)

    #build training set and test set
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        #select testset and remove the testset from all dataset
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))

    #classify and test precision
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
def spamTest():
	docList 	= []
	classList 	= []
	fullText 	= []
	for i in range(1, 26):
		wordList = textParse(open('email/spam/%d.txt' % i).read())
		docList.append(wordList)
		fullText.extend(wordList)
		classList.append(1)

		wordList = textParse(open('email/ham/%d.txt' % i).read())
		docList.append(wordList)
		fullText.extend(wordList)
		classList.append(0)

	vocabList 	= bayes.createVocabList(docList)
	trainingSet = range(50)
	testSet 	= []

	# randomly split data set into 2 sets: test set, and training set
	for i in range(10):
		randIndex = int(random.uniform(0, len(trainingSet)))	# random int 0~len
		testSet.append(trainingSet[randIndex])
		del(trainingSet[randIndex])		# split

	trainMat = [];
	trainClasses = [];
	for docIndex in trainingSet:
		trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
		trainClasses.append(classList[docIndex])

	p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
	errorCount = 0

	for docIndex in testSet:
		wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
		if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
			errorCount += 1
			print "error word: %s" % (docList[docIndex])
	print "error rate is: %f", float(errorCount) / len(testSet)
def spamTest():
    docList = []
    classList = []
    fullText = []

    # parse text from email
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' %i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        #parse text
        wordList = textParse(open('email/ham/%d.txt' %i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)

    #build training set and test set
    trainingSet = range(50);
    testSet =[]
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        #select testset and remove the testset from all dataset
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))

    #classify and test precision
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount)/len(testSet)
Exemple #32
0
def spamTest():
    """
    对贝叶斯垃圾邮件分类器进行自动化处理
    :return:
    """
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # 1. 导入并解析文本文件
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        # 2. 随机构建训练集
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  # train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    # 3. 对测试集分类
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
Exemple #33
0
def main():
    print '开始测试...'

    listOPosts, listClasses = loadDataSet()

    myVocabList = docTool.createVocabList(listOPosts)

    print '词汇表:\n', myVocabList

    wordsVec = docTool.setOfWords2Vec(myVocabList, listOPosts[0])

    print '将第一句话转换成向量,存在的单词为1,不存在的单词为0\n', wordsVec

    trainMat = []

    for postinDoc in listOPosts:
        trainMat.append(docTool.setOfWords2Vec(myVocabList, postinDoc))

    p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)

    testEntry = ['love', 'my', 'dalmation']

    # 将testEntry转化成特征量的组合,也就是一个要求的样本
    thisDoc = np.array(docTool.setOfWords2Vec(myVocabList, testEntry))

    label = bayes.classifyNB(thisDoc, p0V, p1V, pAb)

    print testEntry, '分类是:', label

    testEntry = ['stupid', 'garbage']

    # 将testEntry转化成特征量的组合,也就是一个要求的样本
    thisDoc = np.array(docTool.setOfWords2Vec(myVocabList, testEntry))

    label = bayes.classifyNB(thisDoc, p0V, p1V, pAb)

    print testEntry, '分类是:', label
    print '测试结束...'
def main():
    print '开始测试...'

    listOPosts, listClasses = loadDataSet()

    myVocabList = docTool.createVocabList(listOPosts)

    print '词汇表:\n', myVocabList

    wordsVec = docTool.setOfWords2Vec(myVocabList, listOPosts[0])

    print '将第一句话转换成向量,存在的单词为1,不存在的单词为0\n', wordsVec

    trainMat = []

    for postinDoc in listOPosts:
        trainMat.append(docTool.setOfWords2Vec(myVocabList, postinDoc))

    p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)

    testEntry = ['love', 'my', 'dalmation']

    # 将testEntry转化成特征量的组合,也就是一个要求的样本
    thisDoc = np.array(docTool.setOfWords2Vec(myVocabList, testEntry))

    label = bayes.classifyNB(thisDoc, p0V, p1V, pAb)

    print testEntry, '分类是:',label

    testEntry = ['stupid', 'garbage']

    # 将testEntry转化成特征量的组合,也就是一个要求的样本
    thisDoc = np.array(docTool.setOfWords2Vec(myVocabList, testEntry))

    label = bayes.classifyNB(thisDoc, p0V, p1V, pAb)

    print testEntry, '分类是:',label
    print '测试结束...'
Exemple #35
0
def spamTest():
    docList = []
    classList = []
    #fullText = [] #没起作用

    for i in range(1,26): #此案例中样本集名为1.txt~25.txt
        wordList = textParse(open('email/spam/%d.txt' % i).read()) #解析邮件,分隔成一个个词汇
        docList.append(wordList)  #将样本内容存储到docList中
        #fullText.extend(wordList)
        classList.append(1) #spam下对应的类别标签设置为1
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        #fullText.extend(wordList)
        classList.append(0) #ham下对应的类别标签设置为0
    vocabList = bayes.createVocabList(docList) #通过docList获取全部的词汇表
    trainingSet = list(range(50)) #此处共50个案例,与classList长度对应
    
    testSet = [] #存储测试样本集
    for i in list(range(10)):
        randIndex = int(random.uniform(0,len(trainingSet))) #随机提取样本作为测试样本
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex]) #把测试样本从训练样本中剔除
    trainMat = []
    trainClasses = []

    for docIndex in trainingSet:#遍历训练样本集
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex])) #获取样本中使用词汇情况向量
        trainClasses.append(classList[docIndex])  #获取当前样本的类别标签
    p0V,p1V,pSpam = bayes.trainNB0(array(trainMat), array(trainClasses)) #训练算法,得到概率
    errorCount = 0

    for docIndex in testSet: #遍历测试样本集
        wordVector=bayes.setOfWords2Vec(vocabList, docList[docIndex])
        resultFlag = bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) #使用分类函数进行分类
        if(resultFlag != classList[docIndex]): #如果得到结果不正确,则错误数加上1
            errorCount += 1
    print('the error rate is: ', float(errorCount)/len(testSet))
Exemple #36
0
# coding=utf-8

import bayes

listOPosts, listClasses = bayes.loadDataSet()
myVobList = bayes.createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
	trainMat.append(bayes.setOfWords2Vec(myVobList, postinDoc))

p0v, p1v, pAb = bayes.trainNB0(trainMat, listClasses)
import bayes
from numpy import *
listOposts, listClasses = bayes.loadDataSet()
myVocabList = bayes.createVocabList(listOposts)
trainMat = []
print("-----start for about trainMat----- ")
for postinDoc in listOposts:
    print("postinDoc = ", postinDoc)
    trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    print("trainMat = ", trainMat)

p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)
print("p0V = ", p0V)
print("p1V = ", p1V)
print("pAb = ", pAb)
Exemple #38
0
#coding:utf-8

import bayes

#文档集,标签集
listOPosts, listClasses = bayes.loadDataSet()

#包含所有词的列表
myList = bayes.createVocabList(listOPosts)
#print myList

trainMat = []  #文档矩阵
for i in listOPosts:
    trainMat.append(bayes.setOfWords2Vec(myList, i))
p0Vect, p1Vect, pAbusive = bayes.trainNB0(trainMat, listClasses)
print p0Vect
print p1Vect
print pAbusive  # 侮辱性文档占总文档数目的概率
#print len(trainMat)

#myVec = bayes.setOfWords2Vec(myList,listOPosts[0]) #得到第0篇文档的向量
#print myVec

# vo = [1,2,3]
# print vo.index(2)
# print vo.index(3)
# print vo.index(1)
Exemple #39
0
__author__ = 'jack'

import bayes

listOPosts,listClasses = bayes.loadDataSet()

myVocabList = bayes.createVocabList(listOPosts)

print myVocabList

#print bayes.setOfWords2Vec(myVocabList, listOPosts[0])

trainMat = []
for post in listOPosts:
    trainMat.append(bayes.setOfWords2Vec(myVocabList, post))

p0V, p1V, pAb = bayes.trainNB0(array(trainMat), array(listClasses))

print pAb
print p0V
print p1V

testEntry = ['love', 'my', 'dalmation']
thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
print thisDoc
print testEntry, 'classsified as: ', bayes.classifyNB(thisDoc, p0V, p1V, pAb)

testEntry = ['stupid', 'garbage']
thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
print thisDoc
print testEntry, 'classsified as: ', bayes.classifyNB(thisDoc, p0V, p1V, pAb)
Exemple #40
0
#!/usr/bin/python
#encoding:utf-8
import bayes
from numpy import *
postingList , classList = bayes.loadDataSet()
myVocabList = bayes.createVocabList(postingList)
trainMat = []
for a in postingList:
    trainMat.append( bayes.setOfWords( myVocabList, a ) )
pc, p0, p1 = bayes.trainNB0(trainMat, classList)
test = ['stupid', 'garbage']
thisDoc = array( bayes.setOfWords( myVocabList, test ) )
print bayes.classifyNB(thisDoc, p0, p1, pc)
Exemple #41
0
from numpy import *
import bayes
import FilterMail

postingList, classVec = bayes.loadDataSet()

# get the vablist
vablist = bayes.createVocablist(postingList)
print "Show my vablist\n", vablist
print "-------------------------------"

# get the returnVec
returnVec = bayes.setOfwords2Vec(vablist, ["my", "love", "dog", "happy", "daddy"])
print "the word vec is ", returnVec
print "-------------------------------"
# get the prior probability
trainMat = []
for one in postingList:
    trainMat.append(bayes.setOfwords2Vec(vablist, one))

pa, p1Vec, p0Vec = bayes.trainNB0(trainMat, classVec)
print "the 1 probability is %f, " % pa
print "the each class , each element probability\n", p1Vec, '\n', p0Vec


print "--------------------------------"
bayes.testNB()

print "--------------------------------"
FilterMail.spamTest()
import bayes
import feedparser

listOPosts, listClasses = bayes.loadDataSet()
myVocabList = bayes.createVocabList(listOPosts)
print myVocabList
print bayes.setOfWords2Vec(myVocabList, listOPosts[0])
print bayes.setOfWords2Vec(myVocabList, listOPosts[3])

trainMat = []
for postinDoc in listOPosts:
    trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)
print pAb
print p0V
print p1V

bayes.testingNB()

print '==email classify=='
bayes.spamTest()
print '==email classify=='
bayes.spamTest()
print '==email classify=='
bayes.spamTest()

print '==feedparser classify=='
ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
vocabList, pSF, pNY = bayes.localWords(ny, sf)
vocabList, pSF, pNY = bayes.localWords(ny, sf)
Exemple #43
0
def local_words(feed1, feed0):
    """
    feed1: rss源1
    feed0: rss源0
    """
    import feedparser
    # 文档列表
    doc_list = []
    # 文档类别列表
    class_list = []
    full_text = []
    # 计算两个源中用于训练的数据的数量
    min_len = min(len(feed1['entries']), len(feed0['entries']))
    # 遍历每个训练数据(文档)
    for i in range(min_len):
        # 分词,去掉标点符号
        word_list = text_parse(feed1['entries'][i]['summary'])
        doc_list.append(word_list)
        full_text.extend(word_list)
        class_list.append(1)
        # 分词,去掉标点符号
        word_list = text_parse(feed0['entries'][i]['summary'])
        doc_list.append(word_list)
        full_text.extend(word_list)
        class_list.append(0)
    # 构造单词列表
    vocab_list = create_vocab_list(doc_list)
    # 统计出出现频率前30的单词
    top30_words = calc_most_freq(vocab_list, full_text)
    # 从单词中去掉高频词汇
    for pair_w in top30_words:
        if pair_w[0] in vocab_list:
            vocab_list.remove(pair_w[0])
    # 因为是两个源的数据所以*2
    training_set = range(2 * min_len)
    #print(training_set)
    # 接下来构造测试数据集
    test_set = []
    for i in range(20):
        # 随机从训练数据集中获得20个数据,同时在训练数据集中将其删除
        rand_index = int(random.uniform(0, len(training_set)))
        test_set.append(training_set[rand_index])
        del (training_set[rand_index])
    train_mat = []
    train_classes = []
    # 下面遍历training_set构造出最终用于训练的文档向量和标签
    for doc_index in training_set:
        # 用词袋模型构造每个文档的向量
        train_mat.append(bag_of_word2vec(vocab_list, doc_list[doc_index]))
        train_classes.append(class_list[doc_index])
    # 训练贝叶斯分类器,这里由于使用两源同样数量的数据,所以p_spam为0.5
    p0_v, p1_v, p_spam = trainNB0(np.array(train_mat), np.array(train_classes))
    error_count = 0
    # 测试数据
    for doc_index in test_set:
        # 构造测试文档的向量
        word_vec = bag_of_word2vec(vocab_list, doc_list[doc_index])
        if classifyNB(np.array(word_vec), p0_v, p1_v,
                      p_spam) != class_list[doc_index]:
            error_count += 1
        print('the error rate is: ', float(error_count) / len(test_set))
        return vocab_list, p0_v, p1_v
Exemple #44
0
# coding=utf-8
# http://blog.csdn.net/lu597203933/article/details/38445315
from numpy import *

import bayes
if __name__ == "__main__" :
    listOPosts,listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    print myVocabList
    print bayes.setOfWords2Vec(myVocabList,listOPosts[0])   
    print bayes.setOfWords2Vec(myVocabList,listOPosts[3])
    

    trainMatrix,trainCategory = bayes.getTrainMatrix()
    p0V,p1V,pAb = bayes.trainNB0(trainMatrix,trainCategory)
    print p0V
    print p1V
    print pAb