Exemple #1
0
    def test_inequality(self):
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(bl.om.Poisson('rate', bl.oint(0, 6, 50)))
        S.setTM(bl.tm.Static())
        S.fit()

        S2 = bl.Study()
        S2.loadData(np.array([1, 2, 3, 4, 5]))
        S2.setOM(bl.om.Poisson('rate2', bl.oint(0, 6, 50)))
        S2.setTM(bl.tm.GaussianRandomWalk('sigma', 0.2, target='rate2'))
        S2.fit()

        P = bl.Parser(S, S2)
        P('log(rate2*2*1.2) + 4 + rate^2 > 20', t=3)
        np.testing.assert_almost_equal(
            P('log(rate2@1*2*1.2) + 4 + rate@2^2 > 20'),
            0.162262091093,
            decimal=5,
            err_msg='Erroneous parsing result for inequality.')
        np.testing.assert_almost_equal(
            P('log(rate2*2*1.2) + 4 + rate^2 > 20', t=3),
            0.163699467863,
            decimal=5,
            err_msg=
            'Erroneous parsing result for inequality with fixed timestamp.')
    def test_scaledar1(self):
        S = bl.Study()
        S.loadData(np.array([1, 0, 1, 0, 0]))

        L = bl.om.ScaledAR1('rho', bl.oint(-1, 1, 100), 'sigma', bl.oint(0, 1, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()
        np.testing.assert_almost_equal(S.logEvidence, -4.4178639067800738, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_gaussian(self):
        S = bl.Study()
        S.loadData(np.array([1, 0, 1, 0, 0]))

        L = bl.om.Gaussian('mu', bl.oint(0, 1, 100), 'std', bl.oint(0, 1, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()
        np.testing.assert_almost_equal(S.logEvidence, -12.430583625665736, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_bivariaterandomwalk(self):
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))

        L = bl.om.Gaussian('mu', bl.oint(0, 6, 20), 'sigma', bl.oint(0, 2, 20))
        T = bl.tm.BivariateRandomWalk('sigma1', 1., 'sigma2', 0.1, 'rho', 0.5)
        S.set(L, T)

        S.fit()

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -7.330706514472251,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #5
0
    def test_fit_prior_array(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean',
                           bl.cint(0, 6, 20),
                           'sigma',
                           bl.oint(0, 2, 20),
                           prior=np.ones((20, 20))))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='mean'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.04317995, 0.04296549, 0.04275526, 0.04262151, 0.04262491],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [2.66415455, 2.66519273, 2.66664847, 2.66788051, 2.66828383],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -10.9827282104,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #6
0
    def test_fit_prior_sympy(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian(
                'mean',
                bl.cint(0, 6, 20),
                'sigma',
                bl.oint(0, 2, 20),
                prior=[stats.Uniform('u', 0, 6),
                       stats.Exponential('e', 2.)]))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='mean'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.00909976, 0.0089861, 0.00887967, 0.00881235, 0.00880499],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [2.9942575, 2.99646768, 3., 3.00353232, 3.0057425],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -12.4324853153,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_optimize(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma', bl.oint(0, 2, 20)))

        T = bl.tm.CombinedTransitionModel(bl.tm.GaussianRandomWalk('sigma', 1.07, target='mean'),
                                          bl.tm.RegimeSwitch('log10pMin', -3.90))

        S.setTM(T)
        S.optimize()

        # test parameter distributions
        np.testing.assert_allclose(S.getParameterDistributions('mean', density=False)[1][:, 5],
                                   [4.52572851e-04, 1.67790320e-03, 2.94525791e-07, 1.49841548e-08, 1.10238422e-09],
                                   rtol=1e-05, err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(S.getParameterMeanValues('mean'),
                                   [0.95899404, 1.93816557, 2.99999968, 4.06183394, 5.04100612],
                                   rtol=1e-05, err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence, -8.01030368139, decimal=5,
                                       err_msg='Erroneous log-evidence value.')

        # test optimized hyper-parameter values
        np.testing.assert_almost_equal(S.getHyperParameterValue('sigma'), 1.06576569677, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
        np.testing.assert_almost_equal(S.getHyperParameterValue('log10pMin'), -4.04001476542, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_optimize(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(bl.om.Poisson('rate', bl.oint(0, 6, 1000), prior=stats.Exponential('expon', 1.)))

        T = bl.tm.CombinedTransitionModel(bl.tm.GaussianRandomWalk('sigma', 2.1, target='rate'),
                                          bl.tm.RegimeSwitch('log10pMin', -3))

        S.setTM(T)
        S.optimize()

        # test parameter distributions
        np.testing.assert_allclose(S.getParameterDistributions('rate', density=False)[1][:, 250],
                                   [0.00181567, 0.00213315, 0.00091028, 0.00041154, 0.00090885],
                                   rtol=1e-05, err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(S.getParameterMeanValues('rate'),
                                   [1.01204314, 2.25763551, 3.24176817, 3.74634864, 3.12632199],
                                   rtol=1e-05, err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence, -9.47362827569, decimal=5,
                                       err_msg='Erroneous log-evidence value.')

        # test optimized hyper-parameter values
        np.testing.assert_almost_equal(S.getHyperParameterValue('sigma'), 2.11216289063, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
        np.testing.assert_almost_equal(S.getHyperParameterValue('log10pMin'), -3.0, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #9
0
    def test_fit_0hp(self):
        # carry out fit (this test is designed to fall back on the fit method of the Study class)
        S = bl.HyperStudy()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean',
                           bl.cint(0, 6, 20),
                           'sigma',
                           bl.oint(0, 2, 20),
                           prior=lambda m, s: 1 / s**3))
        S.setTM(bl.tm.Static())
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean', density=False)[1][:, 5],
            [0.00707902, 0.00707902, 0.00707902, 0.00707902, 0.00707902],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(S.getParameterMeanValues('mean'),
                                   [3., 3., 3., 3., 3.],
                                   rtol=1e-05,
                                   err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -16.1946904707,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #10
0
    def test_fit_2hp(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma',
                           bl.oint(0, 2, 20)))

        T = bl.tm.CombinedTransitionModel(
            bl.tm.GaussianRandomWalk('sigma', 0.1, target='mean'),
            bl.tm.RegimeSwitch('log10pMin', -3))

        S.setTM(T)
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.02976422, 0.15404218, 0.10859567, 0.02553673, 0.00054109],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [1.08288559, 2.24388932, 2.38033179, 2.98934128, 4.64547841],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -14.3305753098,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #11
0
    def test_fit_prior_function(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean',
                           bl.cint(0, 6, 20),
                           'sigma',
                           bl.oint(0, 2, 20),
                           prior=lambda m, s: 1. / s))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='mean'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.01591204, 0.01579036, 0.01567361, 0.01559665, 0.01558591],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [2.99576496, 2.99741879, 3., 3.00258121, 3.00423504],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -11.9842221343,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #12
0
    def test_step_set1TM_0hp(self):
        # carry out fit
        S = bl.OnlineStudy(storeHistory=True)
        S.setOM(
            bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma',
                           bl.oint(0, 2, 20)))
        S.setTM(bl.tm.Static())

        data = np.array([1, 2, 3, 4, 5])
        for d in data:
            S.step(d)

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.0053811, 0.38690331, 0.16329865, 0.04887604, 0.01334921],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [0.96310103, 1.5065597, 2.00218465, 2.500366, 3.],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -16.1946904707,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #13
0
    def test_fit_prior_function(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Poisson('rate', bl.oint(0, 6, 1000), prior=lambda x: 1. / x))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='rate'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('rate')[1][:, 250],
            [0.0007529, 0.00070742, 0.00066273, 0.00063262, 0.00062968],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('rate'),
            [2.77252114, 2.78251864, 2.79475018, 2.80541289, 2.81072838],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -11.3966589329,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #14
0
    def test_fit_prior_array(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(bl.om.Poisson('rate', bl.oint(0, 6, 1000),
                              prior=np.ones(1000)))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='rate'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('rate')[1][:, 250],
            [0.00048679, 0.00045124, 0.00041767, 0.00039717, 0.00039976],
            rtol=1e-04,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('rate'),
            [2.81716591, 2.82337653, 2.83204058, 2.83944083, 2.84187612],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -10.0866227472,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #15
0
    def test_fit_prior_sympy(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Poisson('rate',
                          bl.oint(0, 6, 1000),
                          prior=stats.Exponential('expon', 1.)))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='rate'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('rate')[1][:, 250],
            [0.0020607, 0.0019692, 0.00187339, 0.0018053, 0.00179584],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('rate'),
            [2.25427356, 2.26949283, 2.28527551, 2.29704214, 2.30024139],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -11.1819034242,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #16
0
    def test_fit_0hp(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma',
                           bl.oint(0, 2, 20)))
        S.setTM(bl.tm.Static())
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.00707902, 0.00707902, 0.00707902, 0.00707902, 0.00707902],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(S.getParameterMeanValues('mean'),
                                   [3., 3., 3., 3., 3.],
                                   rtol=1e-05,
                                   err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -16.1946904707,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #17
0
    def test_fit_1hp(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma',
                           bl.oint(0, 2, 20)))
        S.setTM(bl.tm.GaussianRandomWalk('sigma', 0.1, target='mean'))
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean')[1][:, 5],
            [0.00722368, 0.00712209, 0.00702789, 0.00696926, 0.00696322],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [2.99313985, 2.99573566, 3., 3.00426434, 3.00686015],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -16.1865343702,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #18
0
    def test_fit_2hp(self):
        # carry out fit
        S = bl.HyperStudy()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma',
                           bl.oint(0, 2, 20)))

        T = bl.tm.CombinedTransitionModel(
            bl.tm.GaussianRandomWalk('sigma',
                                     bl.cint(0, 0.2, 2),
                                     target='mean'),
            bl.tm.RegimeSwitch('log10pMin', [-3, -1]))

        S.setTM(T)
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean', density=False)[1][:, 5], [
                5.80970506e-03, 1.12927905e-01, 4.44501254e-02, 1.00250119e-02,
                1.72751309e-05
            ],
            rtol=1e-05,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [0.96492471, 2.09944204, 2.82451616, 3.72702495, 5.0219119],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -10.7601875492,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')

        # test hyper-parameter distribution
        x, p = S.getHyperParameterDistribution('sigma')
        np.testing.assert_allclose(
            np.array([x, p]), [[0., 0.2], [0.48943645, 0.51056355]],
            rtol=1e-05,
            err_msg='Erroneous values in hyper-parameter distribution.')

        # test joint hyper-parameter distribution
        x, y, p = S.getJointHyperParameterDistribution(['log10pMin', 'sigma'])
        np.testing.assert_allclose(
            np.array([x, y]), [[-3., -1.], [0., 0.2]],
            rtol=1e-05,
            err_msg='Erroneous parameter values in joint hyper-parameter '
            'distribution.')

        np.testing.assert_allclose(
            p, [[0.00701834, 0.0075608], [0.48241812, 0.50300274]],
            rtol=1e-05,
            err_msg='Erroneous probability values in joint hyper-parameter '
            'distribution.')
    def test_fit_1cp_1bp_2hp(self):
        # carry out fit
        S = bl.ChangepointStudy()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean',
                           bl.cint(0, 6, 20),
                           'sigma',
                           bl.oint(0, 2, 20),
                           prior=lambda m, s: 1 / s**3))

        T = bl.tm.SerialTransitionModel(
            bl.tm.Static(), bl.tm.ChangePoint('ChangePoint', [0, 1]),
            bl.tm.CombinedTransitionModel(
                bl.tm.GaussianRandomWalk('sigma',
                                         bl.cint(0, 0.2, 2),
                                         target='mean'),
                bl.tm.RegimeSwitch('log10pMin', [-3, -1])),
            bl.tm.BreakPoint('BreakPoint', 'all'), bl.tm.Static())

        S.setTM(T)
        S.fit()

        # test parameter distributions
        np.testing.assert_allclose(
            S.getParameterDistributions('mean', density=False)[1][:, 5],
            [0.01243717, 0.03016095, 0.016939, 0.00024909, 0.00024909],
            rtol=1e-04,
            err_msg='Erroneous posterior distribution values.')

        # test parameter mean values
        np.testing.assert_allclose(
            S.getParameterMeanValues('mean'),
            [0.96802204, 1.95705078, 3.47078681, 4.22225665, 4.22225665],
            rtol=1e-05,
            err_msg='Erroneous posterior mean values.')

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence,
                                       -15.072007461556161,
                                       decimal=5,
                                       err_msg='Erroneous log-evidence value.')

        # test hyper-parameter distribution
        x, p = S.getHyperParameterDistribution('sigma')
        np.testing.assert_allclose(
            np.array([x, p]), [[0., 0.2], [0.4963324, 0.5036676]],
            rtol=1e-05,
            err_msg='Erroneous values in hyper-parameter distribution.')

        # test duration distribution
        d, p = S.getDurationDistribution(['ChangePoint', 'BreakPoint'])
        np.testing.assert_allclose(
            np.array([d, p]),
            [[1., 2., 3.], [0.01039273, 0.49395867, 0.49564861]],
            rtol=1e-05,
            err_msg='Erroneous values in duration distribution.')
Exemple #20
0
    def test_distribution(self):
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(bl.om.Poisson('rate', bl.oint(0, 6, 50)))
        S.setTM(bl.tm.Static())
        S.fit()

        S2 = bl.Study()
        S2.loadData(np.array([1, 2, 3, 4, 5]))
        S2.setOM(bl.om.Poisson('rate2', bl.oint(0, 6, 50)))
        S2.setTM(bl.tm.GaussianRandomWalk('sigma', 0.2, target='rate2'))
        S2.fit()

        P = bl.Parser(S, S2)
        x, p = P('log(rate2@1*2*1.2)+ 4 + rate@2^2')
        np.testing.assert_allclose(p[100:105],
                                   [0.00643873, 0.00618468, 0.00466452, 0.00314371, 0.00365816],
                                   rtol=1e-05, err_msg='Erroneous derived probability distribution.')
    def test_poisson(self):
        S = bl.Study()
        S.loadData(np.array([1, 0, 1, 0, 0]))

        L = bl.om.Poisson('rate', bl.oint(0, 1, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()
        np.testing.assert_almost_equal(S.logEvidence, -4.433708287229158, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_scipy_2p(self):
        # carry out fit
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))

        def likelihood(data, mu, std):
            x = data

            pdf = np.exp((x - mu) ** 2. / (2 * std ** 2.)) / np.sqrt(2 * np.pi * std ** 2.)
            return pdf

        L = bl.om.NumPy(likelihood, 'mu', bl.oint(0, 7, 100), 'std', bl.oint(1, 2, 100))

        S.setOM(L)
        S.setTM(bl.tm.Static())
        S.fit()

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence, 29.792823521784587, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #23
0
    def test_save_load(self):
        S = bl.HyperStudy()
        S.loadData(np.array([1, 2, 3, 4, 5]))
        S.setOM(
            bl.om.Gaussian('mean', bl.cint(0, 6, 20), 'sigma',
                           bl.oint(0, 2, 20)))
        S.setTM(bl.tm.Static())
        S.fit()

        bl.save('study.bl', S)
        S = bl.load('study.bl')
    def test_bernoulli(self):
        S = bl.Study()
        S.loadData(np.array([1, 0, 1, 0, 0]))

        L = bl.om.Bernoulli('p', bl.oint(0, 1, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()
        np.testing.assert_almost_equal(S.logEvidence, -4.3494298741972859, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_gaussianmean(self):
        S = bl.Study()
        S.loadData(np.array([[1, 0.5], [0, 0.4], [1, 0.3], [0, 0.2], [0, 0.1]]))

        L = bl.om.GaussianMean('mu', bl.oint(0, 1, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()
        np.testing.assert_almost_equal(S.logEvidence, -6.3333705075036226, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_whitenoise(self):
        S = bl.Study()
        S.loadData(np.array([1, 0, 1, 0, 0]))

        L = bl.om.WhiteNoise('std', bl.oint(0, 1, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()
        np.testing.assert_almost_equal(S.logEvidence, -6.8161638661444073, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
Exemple #27
0
    def test_dynamichyperparameter(self):
        S = bl.OnlineStudy(storeHistory=True)
        S.setOM(bl.om.Poisson('rate', bl.oint(0, 6, 50)))
        S.add(
            'gradual',
            bl.tm.GaussianRandomWalk('sigma',
                                     bl.cint(0, 0.2, 5),
                                     target='rate'))
        S.add('static', bl.tm.Static())

        for d in np.arange(5):
            S.step(d)

        p = S.eval('exp(0.99*log(sigma@2))+1 > 1.1')

        np.testing.assert_almost_equal(
            p,
            0.61228433813735061,
            decimal=5,
            err_msg='Erroneous parsing result for inequality.')

        S = bl.OnlineStudy(storeHistory=False)
        S.setOM(bl.om.Poisson('rate', bl.oint(0, 6, 50)))
        S.add(
            'gradual',
            bl.tm.GaussianRandomWalk('sigma',
                                     bl.cint(0, 0.2, 5),
                                     target='rate'))
        S.add('static', bl.tm.Static())

        for d in np.arange(3):
            S.step(d)

        p = S.eval('exp(0.99*log(sigma))+1 > 1.1')

        np.testing.assert_almost_equal(
            p,
            0.61228433813735061,
            decimal=5,
            err_msg='Erroneous parsing result for inequality.')
    def test_static(self):
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))

        L = bl.om.Poisson('rate', bl.oint(0, 6, 100))
        T = bl.tm.Static()
        S.set(L, T)

        S.fit()

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence, -10.372209708143769, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_regimeswitch(self):
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))

        L = bl.om.Poisson('rate', bl.oint(0, 6, 100))
        T = bl.tm.RegimeSwitch('p_min', -3)
        S.set(L, T)

        S.fit()

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence, -10.372866559561402, decimal=5,
                                       err_msg='Erroneous log-evidence value.')
    def test_independent(self):
        S = bl.Study()
        S.loadData(np.array([1, 2, 3, 4, 5]))

        L = bl.om.Poisson('rate', bl.oint(0, 6, 100))
        T = bl.tm.Independent()
        S.set(L, T)

        S.fit()

        # test model evidence value
        np.testing.assert_almost_equal(S.logEvidence, -11.087360077190617, decimal=5,
                                       err_msg='Erroneous log-evidence value.')