def check_lower_bound(shape_mu, shape_alpha, plates_mu=(), **kwargs):
     M = GaussianARD(np.ones(plates_mu + shape_mu),
                     np.ones(plates_mu + shape_mu),
                     shape=shape_mu,
                     plates=plates_mu)
     if not ('ndim' in kwargs or 'shape' in kwargs):
         kwargs['ndim'] = len(shape_mu)
     X = GaussianARD(M,
                     2*np.ones(shape_alpha),
                     **kwargs)
     Y = GaussianARD(X,
                     3*np.ones(X.get_shape(0)),
                     **kwargs)
     Y.observe(4*np.ones(Y.get_shape(0)))
     X.update()
     Cov = 1/(2+3)
     mu = Cov * (2*1 + 3*4)
     x2 = mu**2 + Cov
     logH_X = (+ 0.5*(1+np.log(2*np.pi)) 
               + 0.5*np.log(Cov))
     logp_X = (- 0.5*np.log(2*np.pi) 
               + 0.5*np.log(2) 
               - 0.5*2*(x2 - 2*mu*1 + 1**2+1))
     r = np.prod(X.get_shape(0))
     self.assertAllClose(r * (logp_X + logH_X),
                         X.lower_bound_contribution())
Exemple #2
0
    def test_message_to_parent(self):
        """
        Test the message to parents of Concatenate node.
        """

        # Two parents without shapes
        X1 = GaussianARD(0, 1, plates=(2, ), shape=())
        X2 = GaussianARD(0, 1, plates=(3, ), shape=())
        Z = Concatenate(X1, X2)
        Y = GaussianARD(Z, 1)
        Y.observe(np.random.randn(*Y.get_shape(0)))
        m1 = X1._message_from_children()
        m2 = X2._message_from_children()
        m = Z._message_from_children()
        self.assertAllClose((m[0] * np.ones((5, )))[:2], m1[0] * np.ones(
            (2, )))
        self.assertAllClose((m[1] * np.ones((5, )))[:2], m1[1] * np.ones(
            (2, )))
        self.assertAllClose((m[0] * np.ones((5, )))[2:], m2[0] * np.ones(
            (3, )))
        self.assertAllClose((m[1] * np.ones((5, )))[2:], m2[1] * np.ones(
            (3, )))

        # Two parents with shapes
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", FutureWarning)

            X1 = GaussianARD(0, 1, plates=(2, ), shape=(4, 6))
            X2 = GaussianARD(0, 1, plates=(3, ), shape=(4, 6))
            Z = Concatenate(X1, X2)
            Y = GaussianARD(Z, 1)
            Y.observe(np.random.randn(*Y.get_shape(0)))
            m1 = X1._message_from_children()
            m2 = X2._message_from_children()
            m = Z._message_from_children()
            self.assertAllClose((m[0] * np.ones((5, 4, 6)))[:2],
                                m1[0] * np.ones((2, 4, 6)))
            self.assertAllClose((m[1] * np.ones((5, 4, 6, 4, 6)))[:2],
                                m1[1] * np.ones((2, 4, 6, 4, 6)))
            self.assertAllClose((m[0] * np.ones((5, 4, 6)))[2:],
                                m2[0] * np.ones((3, 4, 6)))
            self.assertAllClose((m[1] * np.ones((5, 4, 6, 4, 6)))[2:],
                                m2[1] * np.ones((3, 4, 6, 4, 6)))

            # Two parents with non-default concatenation axis
            X1 = GaussianARD(0, 1, plates=(2, 4), shape=())
            X2 = GaussianARD(0, 1, plates=(3, 4), shape=())
            Z = Concatenate(X1, X2, axis=-2)
            Y = GaussianARD(Z, 1)
            Y.observe(np.random.randn(*Y.get_shape(0)))
            m1 = X1._message_from_children()
            m2 = X2._message_from_children()
            m = Z._message_from_children()
            self.assertAllClose((m[0] * np.ones((5, 4)))[:2], m1[0] * np.ones(
                (2, 4)))
            self.assertAllClose((m[1] * np.ones((5, 4)))[:2], m1[1] * np.ones(
                (2, 4)))
            self.assertAllClose((m[0] * np.ones((5, 4)))[2:], m2[0] * np.ones(
                (3, 4)))
            self.assertAllClose((m[1] * np.ones((5, 4)))[2:], m2[1] * np.ones(
                (3, 4)))

            # Constant parent
            X1 = np.random.randn(2, 4, 6)
            X2 = GaussianARD(0, 1, plates=(3, ), shape=(4, 6))
            Z = Concatenate(X1, X2)
            Y = GaussianARD(Z, 1)
            Y.observe(np.random.randn(*Y.get_shape(0)))
            m1 = Z._message_to_parent(0)
            m2 = X2._message_from_children()
            m = Z._message_from_children()
            self.assertAllClose((m[0] * np.ones((5, 4, 6)))[:2],
                                m1[0] * np.ones((2, 4, 6)))
            self.assertAllClose((m[1] * np.ones((5, 4, 6, 4, 6)))[:2],
                                m1[1] * np.ones((2, 4, 6, 4, 6)))
            self.assertAllClose((m[0] * np.ones((5, 4, 6)))[2:],
                                m2[0] * np.ones((3, 4, 6)))
            self.assertAllClose((m[1] * np.ones((5, 4, 6, 4, 6)))[2:],
                                m2[1] * np.ones((3, 4, 6, 4, 6)))

        pass
        def check(indices, plates, shape, axis=-1, use_mask=False):
            mu = np.random.rand(*(plates+shape))
            alpha = np.random.rand(*(plates+shape))
            X = GaussianARD(mu, alpha, shape=shape, plates=plates)
            Y = Take(X, indices, plate_axis=axis)
            Z = GaussianARD(Y, 1, shape=shape)
            z = np.random.randn(*(Z.get_shape(0)))
            if use_mask:
                mask = np.mod(np.reshape(np.arange(np.prod(Z.plates)), Z.plates), 2) != 0
            else:
                mask = True
            Z.observe(z, mask=mask)
            X.update()
            (x0, x1) = X.get_moments()

            # For comparison, build the same model brute force
            X = GaussianARD(mu, alpha, shape=shape, plates=plates)

            # Number of trailing plate axes before the take axis
            N = len(X.plates) + axis

            # Reshape the take axes into a single axis
            z_shape = X.plates[:axis] + (-1,)
            if axis < -1:
                z_shape = z_shape + X.plates[(axis+1):]
            z_shape = z_shape + shape
            z = np.reshape(z, z_shape)

            # Reshape the take axes into a single axis
            if use_mask:
                mask_shape = X.plates[:axis] + (-1,)
                if axis < -1:
                    mask_shape = mask_shape + X.plates[(axis+1):]
                mask = np.reshape(mask, mask_shape)

            for (j, i) in enumerate(range(np.size(indices))):
                ind = np.array(indices).flatten()[i]
                index_x = N*(slice(None),) + (ind,)
                index_z = N*(slice(None),) + (j,)
                # print(index)
                Xi = X[index_x]
                zi = z[index_z]
                Zi = GaussianARD(Xi, 1, ndim=len(shape))
                if use_mask:
                    maski = mask[index_z]
                else:
                    maski = True
                Zi.observe(zi, mask=maski)

            X.update()

            self.assertAllClose(
                x0,
                X.get_moments()[0],
            )

            self.assertAllClose(
                x1,
                X.get_moments()[1],
            )

            return
Exemple #4
0
    def test_message_to_parent(self):
        """
        Test the message to parents of Concatenate node.
        """

        # Two parents without shapes
        X1 = GaussianARD(0, 1, plates=(2,), shape=())
        X2 = GaussianARD(0, 1, plates=(3,), shape=())
        Z = Concatenate(X1, X2)
        Y = GaussianARD(Z, 1)
        Y.observe(np.random.randn(*Y.get_shape(0)))
        m1 = X1._message_from_children()
        m2 = X2._message_from_children()
        m = Z._message_from_children()
        self.assertAllClose((m[0]*np.ones((5,)))[:2],
                            m1[0]*np.ones((2,)))
        self.assertAllClose((m[1]*np.ones((5,)))[:2],
                            m1[1]*np.ones((2,)))
        self.assertAllClose((m[0]*np.ones((5,)))[2:],
                            m2[0]*np.ones((3,)))
        self.assertAllClose((m[1]*np.ones((5,)))[2:],
                            m2[1]*np.ones((3,)))

        # Two parents with shapes
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", FutureWarning)

            X1 = GaussianARD(0, 1, plates=(2,), shape=(4,6))
            X2 = GaussianARD(0, 1, plates=(3,), shape=(4,6))
            Z = Concatenate(X1, X2)
            Y = GaussianARD(Z, 1)
            Y.observe(np.random.randn(*Y.get_shape(0)))
            m1 = X1._message_from_children()
            m2 = X2._message_from_children()
            m = Z._message_from_children()
            self.assertAllClose((m[0]*np.ones((5,4,6)))[:2],
                                m1[0]*np.ones((2,4,6)))
            self.assertAllClose((m[1]*np.ones((5,4,6,4,6)))[:2],
                                m1[1]*np.ones((2,4,6,4,6)))
            self.assertAllClose((m[0]*np.ones((5,4,6)))[2:],
                                m2[0]*np.ones((3,4,6)))
            self.assertAllClose((m[1]*np.ones((5,4,6,4,6)))[2:],
                                m2[1]*np.ones((3,4,6,4,6)))

            # Two parents with non-default concatenation axis
            X1 = GaussianARD(0, 1, plates=(2,4), shape=())
            X2 = GaussianARD(0, 1, plates=(3,4), shape=())
            Z = Concatenate(X1, X2, axis=-2)
            Y = GaussianARD(Z, 1)
            Y.observe(np.random.randn(*Y.get_shape(0)))
            m1 = X1._message_from_children()
            m2 = X2._message_from_children()
            m = Z._message_from_children()
            self.assertAllClose((m[0]*np.ones((5,4)))[:2],
                                m1[0]*np.ones((2,4)))
            self.assertAllClose((m[1]*np.ones((5,4)))[:2],
                                m1[1]*np.ones((2,4)))
            self.assertAllClose((m[0]*np.ones((5,4)))[2:],
                                m2[0]*np.ones((3,4)))
            self.assertAllClose((m[1]*np.ones((5,4)))[2:],
                                m2[1]*np.ones((3,4)))

            # Constant parent
            X1 = np.random.randn(2,4,6)
            X2 = GaussianARD(0, 1, plates=(3,), shape=(4,6))
            Z = Concatenate(X1, X2)
            Y = GaussianARD(Z, 1)
            Y.observe(np.random.randn(*Y.get_shape(0)))
            m1 = Z._message_to_parent(0)
            m2 = X2._message_from_children()
            m = Z._message_from_children()
            self.assertAllClose((m[0]*np.ones((5,4,6)))[:2],
                                m1[0]*np.ones((2,4,6)))
            self.assertAllClose((m[1]*np.ones((5,4,6,4,6)))[:2],
                                m1[1]*np.ones((2,4,6,4,6)))
            self.assertAllClose((m[0]*np.ones((5,4,6)))[2:],
                                m2[0]*np.ones((3,4,6)))
            self.assertAllClose((m[1]*np.ones((5,4,6,4,6)))[2:],
                                m2[1]*np.ones((3,4,6,4,6)))

        pass