def test_random(self): """ Test random sampling of mixture node """ o = 1e-20 X = Mixture([1, 0, 2], Categorical, [[o, o, o, 1], [o, o, 1, o], [1, o, o, o]]) x = X.random() self.assertAllClose(x, [2, 3, 0]) pass
def test_random(self): """ Test random sampling of mixture node """ o = 1e-20 X = Mixture([1, 0, 2], Categorical, [ [o, o, o, 1], [o, o, 1, o], [1, o, o, o] ]) x = X.random() self.assertAllClose(x, [2, 3, 0]) pass
Lambda = Wishart(D, 1e-5 * np.identity(D), plates=(K, ), name='Lambda') Y = Mixture(Z, Gaussian, mu, Lambda, name='Y') Z.initialize_from_random() Q = VB(Y, mu, Lambda, Z, alpha) Y.observe(y) Q.update(repeat=1000) bpplt.gaussian_mixture_2d(Y, alpha=alpha, scale=2) Q.compute_lowerbound() Y.random() from sklearn.mixture import BayesianGaussianMixture # DD fin_gmm = BayesianGaussianMixture( weight_concentration_prior_type="dirichlet_distribution", covariance_type='full', weight_concentration_prior=1.2, n_components=10, reg_covar=0, init_params='random', max_iter=1500, mean_precision_prior=.8) fitted = fin_gmm.fit(X)