Exemple #1
0
    def lower_bound_contribution(self, gradient=False):
        # Compute E[ log p(X|parents) - log q(X) ] over q(X)q(parents)

        # Messages from parents
        #u_parents = [parent.message_to_child() for parent in self.parents]
        u_parents = self._message_from_parents()
        phi = self._distribution.compute_phi_from_parents(*u_parents)
        # G from parents
        L = self._distribution.compute_cgf_from_parents(*u_parents)
        # L = g
        # G for unobserved variables (ignored variables are handled
        # properly automatically)
        latent_mask = np.logical_not(self.observed)
        #latent_mask = np.logical_and(self.mask, np.logical_not(self.observed))
        # F for observed, G for latent
        L = L + np.where(self.observed, self.f, -self.g)
        for (phi_p, phi_q, u_q, dims) in zip(phi, self.phi, self.u, self.dims):
            # Form a mask which puts observed variables to zero and
            # broadcasts properly
            latent_mask_i = utils.add_trailing_axes(
                utils.add_leading_axes(latent_mask,
                                       len(self.plates) -
                                       np.ndim(latent_mask)), len(dims))
            axis_sum = tuple(range(-len(dims), 0))

            # Compute the term
            phi_q = np.where(latent_mask_i, phi_q, 0)
            # TODO/FIXME: Use einsum here?
            Z = np.sum((phi_p - phi_q) * u_q, axis=axis_sum)

            L = L + Z

        return (np.sum(np.where(self.mask, L, 0)) * self._plate_multiplier(
            self.plates, np.shape(L), np.shape(self.mask)))
Exemple #2
0
    def update_u(self, u, mask=True):
        # Store the computed moments u but do not change moments for
        # observations, i.e., utilize the mask.
        for ind in range(len(u)):
            # Add axes to the mask for the variable dimensions (mask
            # contains only axes for the plates).
            u_mask = utils.add_trailing_axes(mask, self.ndims[ind])

            # Enlarge self.u[ind] as necessary so that it can store the
            # broadcasted result.
            sh = utils.broadcasted_shape_from_arrays(self.u[ind], u[ind],
                                                     u_mask)
            self.u[ind] = utils.repeat_to_shape(self.u[ind], sh)

            # Use mask to update only unobserved plates and keep the
            # observed as before
            np.copyto(self.u[ind], u[ind], where=u_mask)

            # Make sure u has the correct number of dimensions:
            shape = self.get_shape(ind)
            ndim = len(shape)
            ndim_u = np.ndim(self.u[ind])
            if ndim > ndim_u:
                self.u[ind] = utils.add_leading_axes(u[ind], ndim - ndim_u)
            elif ndim < np.ndim(self.u[ind]):
                raise Exception("Weird, this shouldn't happen.. :)")
Exemple #3
0
    def _update_phi_from_parents(self, *u_parents):

        # TODO/FIXME: Could this be combined to the function
        # _update_distribution_and_lowerbound ?
        # No, because some initialization methods may want to use this.

        # This makes correct broadcasting
        self.phi = self._distribution.compute_phi_from_parents(*u_parents)
        #self.phi = self._compute_phi_from_parents(*u_parents)
        self.phi = list(self.phi)
        # Make sure phi has the correct number of axes. It makes life
        # a bit easier elsewhere.
        for i in range(len(self.phi)):
            axes = len(self.plates) + self.ndims[i] - np.ndim(self.phi[i])
            if axes > 0:
                # Add axes
                self.phi[i] = utils.add_leading_axes(self.phi[i], axes)
            elif axes < 0:
                # Remove extra leading axes
                first = -(len(self.plates)+self.ndims[i])
                sh = np.shape(self.phi[i])[first:]
                self.phi[i] = np.reshape(self.phi[i], sh)
            # Check that the shape is correct
            if not utils.is_shape_subset(np.shape(self.phi[i]),
                                         self.get_shape(i)):
                raise ValueError("Incorrect shape of phi[%d] in node class %s. "
                                 "Shape is %s but it should be broadcastable "
                                 "to shape %s."
                                 % (i,
                                    self.__class__.__name__,
                                    np.shape(self.phi[i]),
                                    self.get_shape(i)))
Exemple #4
0
    def _update_phi_from_parents(self, *u_parents):

        # TODO/FIXME: Could this be combined to the function
        # _update_distribution_and_lowerbound ?
        # No, because some initialization methods may want to use this.

        # This makes correct broadcasting
        self.phi = self._distribution.compute_phi_from_parents(*u_parents)
        #self.phi = self._compute_phi_from_parents(*u_parents)
        self.phi = list(self.phi)
        # Make sure phi has the correct number of axes. It makes life
        # a bit easier elsewhere.
        for i in range(len(self.phi)):
            axes = len(self.plates) + self._distribution.ndims[i] - np.ndim(
                self.phi[i])
            if axes > 0:
                # Add axes
                self.phi[i] = utils.add_leading_axes(self.phi[i], axes)
            elif axes < 0:
                # Remove extra leading axes
                first = -(len(self.plates) + self._distribution.ndims[i])
                sh = np.shape(self.phi[i])[first:]
                self.phi[i] = np.reshape(self.phi[i], sh)
            # Check that the shape is correct
            if not utils.is_shape_subset(np.shape(self.phi[i]),
                                         self.get_shape(i)):
                raise ValueError("Incorrect shape in phi[%d]. Shape is %s but "
                                 "it should be broadcastable to shape %s." %
                                 (i, np.shape(self.phi[i]), self.get_shape(i)))
Exemple #5
0
    def update_u(self, u, mask=True):
        # Store the computed moments u but do not change moments for
        # observations, i.e., utilize the mask.
        for ind in range(len(u)):
            # Add axes to the mask for the variable dimensions (mask
            # contains only axes for the plates).
            u_mask = utils.add_trailing_axes(mask, self.ndims[ind])

            # Enlarge self.u[ind] as necessary so that it can store the
            # broadcasted result.
            sh = utils.broadcasted_shape_from_arrays(self.u[ind], u[ind], u_mask)
            self.u[ind] = utils.repeat_to_shape(self.u[ind], sh)

            # Use mask to update only unobserved plates and keep the
            # observed as before
            np.copyto(self.u[ind],
                      u[ind],
                      where=u_mask)

            # Make sure u has the correct number of dimensions:
            shape = self.get_shape(ind)
            ndim = len(shape)
            ndim_u = np.ndim(self.u[ind])
            if ndim > ndim_u:
                self.u[ind] = utils.add_leading_axes(u[ind], ndim - ndim_u)
            elif ndim < np.ndim(self.u[ind]):
                raise Exception("Weird, this shouldn't happen.. :)")
Exemple #6
0
 def update_phi_from_parents(self, u_parents):
     # This makes correct broadcasting
     self.phi = self.compute_phi_from_parents(u_parents)
     self.phi = list(self.phi)
     # Make sure phi has the correct number of axes. It makes life
     # a bit easier elsewhere.
     for i in range(len(self.phi)):
         axes = len(self.plates) + self.ndims[i] - np.ndim(self.phi[i])
         if axes > 0:
             # Add axes
             self.phi[i] = utils.add_leading_axes(self.phi[i], axes)
         elif axes < 0:
             # Remove extra leading axes
             first = -(len(self.plates)+self.ndims[i])
             sh = np.shape(self.phi[i])[first:]
             self.phi[i] = np.reshape(self.phi[i], sh)
Exemple #7
0
    def _set_moments(self, u, mask=True):
        # Store the computed moments u but do not change moments for
        # observations, i.e., utilize the mask.
        for ind in range(len(u)):
            # Add axes to the mask for the variable dimensions (mask
            # contains only axes for the plates).
            u_mask = utils.add_trailing_axes(mask, self._distribution.ndims[ind])

            # Enlarge self.u[ind] as necessary so that it can store the
            # broadcasted result.
            sh = utils.broadcasted_shape_from_arrays(self.u[ind], u[ind], u_mask)
            self.u[ind] = utils.repeat_to_shape(self.u[ind], sh)

            # TODO/FIXME/BUG: The mask of observations is not used, observations
            # may be overwritten!!! ???
            
            # Hah, this function is used to set the observations! The caller
            # should be careful what mask he uses! If you want to set only
            # latent variables, then use such a mask.
            
            # Use mask to update only unobserved plates and keep the
            # observed as before
            np.copyto(self.u[ind],
                      u[ind],
                      where=u_mask)

            # Make sure u has the correct number of dimensions:
            # TODO/FIXME: Maybe it would be good to also check that u has a
            # shape that is a sub-shape of get_shape.
            shape = self.get_shape(ind)
            ndim = len(shape)
            ndim_u = np.ndim(self.u[ind])
            if ndim > ndim_u:
                self.u[ind] = utils.add_leading_axes(u[ind], ndim - ndim_u)
            elif ndim < ndim_u:
                raise RuntimeError(
                    "The size of the variable %s's %s-th moment "
                    "array is %s which is larger than it should "
                    "be, that is, %s, based on the plates %s and "
                    "dimension %s. Check that you have provided "
                    "plates properly."
                    % (self.name,
                       ind,
                       np.shape(self.u[ind]), 
                       shape,
                       self.plates,
                       self.dims[ind]))
Exemple #8
0
    def _set_moments(self, u, mask=True):
        # Store the computed moments u but do not change moments for
        # observations, i.e., utilize the mask.
        for ind in range(len(u)):
            # Add axes to the mask for the variable dimensions (mask
            # contains only axes for the plates).
            u_mask = utils.add_trailing_axes(mask,
                                             self._distribution.ndims[ind])

            # Enlarge self.u[ind] as necessary so that it can store the
            # broadcasted result.
            sh = utils.broadcasted_shape_from_arrays(self.u[ind], u[ind],
                                                     u_mask)
            self.u[ind] = utils.repeat_to_shape(self.u[ind], sh)

            # TODO/FIXME/BUG: The mask of observations is not used, observations
            # may be overwritten!!! ???

            # Hah, this function is used to set the observations! The caller
            # should be careful what mask he uses! If you want to set only
            # latent variables, then use such a mask.

            # Use mask to update only unobserved plates and keep the
            # observed as before
            np.copyto(self.u[ind], u[ind], where=u_mask)

            # Make sure u has the correct number of dimensions:
            # TODO/FIXME: Maybe it would be good to also check that u has a
            # shape that is a sub-shape of get_shape.
            shape = self.get_shape(ind)
            ndim = len(shape)
            ndim_u = np.ndim(self.u[ind])
            if ndim > ndim_u:
                self.u[ind] = utils.add_leading_axes(u[ind], ndim - ndim_u)
            elif ndim < ndim_u:
                raise RuntimeError(
                    "The size of the variable %s's %s-th moment "
                    "array is %s which is larger than it should "
                    "be, that is, %s, based on the plates %s and "
                    "dimension %s. Check that you have provided "
                    "plates properly." % (self.name, ind, np.shape(
                        self.u[ind]), shape, self.plates, self.dims[ind]))
Exemple #9
0
    def _update_phi_from_parents(self, *u_parents):

        # TODO/FIXME: Could this be combined to the function
        # _update_distribution_and_lowerbound ?
        # No, because some initialization methods may want to use this.

        # This makes correct broadcasting
        self.phi = self._compute_phi_from_parents(*u_parents)
        self.phi = list(self.phi)
        # Make sure phi has the correct number of axes. It makes life
        # a bit easier elsewhere.
        for i in range(len(self.phi)):
            axes = len(self.plates) + self.ndims[i] - np.ndim(self.phi[i])
            if axes > 0:
                # Add axes
                self.phi[i] = utils.add_leading_axes(self.phi[i], axes)
            elif axes < 0:
                # Remove extra leading axes
                first = -(len(self.plates) + self.ndims[i])
                sh = np.shape(self.phi[i])[first:]
                self.phi[i] = np.reshape(self.phi[i], sh)
Exemple #10
0
    def _update_phi_from_parents(self, *u_parents):

        # TODO/FIXME: Could this be combined to the function
        # _update_distribution_and_lowerbound ?
        # No, because some initialization methods may want to use this.

        # This makes correct broadcasting
        self.phi = self._compute_phi_from_parents(*u_parents)
        self.phi = list(self.phi)
        # Make sure phi has the correct number of axes. It makes life
        # a bit easier elsewhere.
        for i in range(len(self.phi)):
            axes = len(self.plates) + self.ndims[i] - np.ndim(self.phi[i])
            if axes > 0:
                # Add axes
                self.phi[i] = utils.add_leading_axes(self.phi[i], axes)
            elif axes < 0:
                # Remove extra leading axes
                first = -(len(self.plates)+self.ndims[i])
                sh = np.shape(self.phi[i])[first:]
                self.phi[i] = np.reshape(self.phi[i], sh)
Exemple #11
0
    def lower_bound_contribution(self, gradient=False):
        # Compute E[ log p(X|parents) - log q(X) ] over q(X)q(parents)
        
        # Messages from parents
        #u_parents = [parent.message_to_child() for parent in self.parents]
        u_parents = self._message_from_parents()
        phi = self._compute_phi_from_parents(*u_parents)
        # G from parents
        L = self._compute_cgf_from_parents(*u_parents)
        # L = g
        # G for unobserved variables (ignored variables are handled
        # properly automatically)
        latent_mask = np.logical_not(self.observed)
        #latent_mask = np.logical_and(self.mask, np.logical_not(self.observed))
        # F for observed, G for latent
        L = L + np.where(self.observed, self.f, -self.g)
        for (phi_p, phi_q, u_q, dims) in zip(phi, self.phi, self.u, self.dims):
            # Form a mask which puts observed variables to zero and
            # broadcasts properly
            latent_mask_i = utils.add_trailing_axes(
                                utils.add_leading_axes(
                                    latent_mask,
                                    len(self.plates) - np.ndim(latent_mask)),
                                len(dims))
            axis_sum = tuple(range(-len(dims),0))

            # Compute the term
            phi_q = np.where(latent_mask_i, phi_q, 0)
            # TODO/FIXME: Use einsum here?
            Z = np.sum((phi_p-phi_q) * u_q, axis=axis_sum)

            L = L + Z

        return (np.sum(np.where(self.mask, L, 0))
                * self._plate_multiplier(self.plates,
                                         np.shape(L),
                                         np.shape(self.mask)))