Exemple #1
0
    # define the initial parameters
    fit_params = Parameters()
    if lineshape == 'pseudovoigt':
        cen = newbin_axis[np.unravel_index(newhist.argmax(), newhist.shape)]
        fit_params.add('amp_1', value=50000, min=100, max=1000000)
        fit_params.add('cen_1', value=cen, min=cen - 0.2, max=cen + 0.2)
        fit_params.add('sig_1', value=0.1, min=0.01, max=0.5)
        fit_params.add('ratio_1', value=0.5, min=0, max=1)

    # run the fit
    result = minimize(util.objective_lmfit,
                      fit_params,
                      args=(fit_axis, fit_hist, lineshape))
    report_fit(result.params)
    y_fit = util.function_lmfit(params=result.params,
                                iterator=0,
                                x_axis=newbin_axis,
                                distribution=lineshape)
else:
    y_fit = None
    result = None

##################################
# plot the histogram and the fit #
##################################
fig, ax = plt.subplots(1, 1)
plt.plot(bin_axis, hist, 'o', newbin_axis, newhist, '-')
if histogram_Yaxis == 'log':
    ax.set_yscale('log')
if fit:
    if histogram_Yaxis == 'linear':
        ax.plot(newbin_axis, y_fit, '-')
Exemple #2
0
    line, = axes_dict[idx][0].plot(
        linecuts[idx, width_length // 2 - roi_width:width_length // 2 +
                 roi_width],  # x axis
        linecuts[idx + 3, width_length // 2 - roi_width:width_length // 2 +
                 roi_width],  # cut
        'ro',
        fillstyle='none')
    line.set_label(f'cut along {axes_dict[idx][1]}')
    fit_x_axis = np.linspace(
        linecuts[idx, width_length // 2 - roi_width:width_length // 2 +
                 roi_width].min(),
        linecuts[idx, width_length // 2 - roi_width:width_length // 2 +
                 roi_width].max(),
        num=200)
    y_fit = util.function_lmfit(params=minimization.params,
                                iterator=idx,
                                x_axis=fit_x_axis,
                                distribution='gaussian')
    line, = axes_dict[idx][0].plot(fit_x_axis, y_fit, 'b-')
    sig_name = f'sig_{idx+1}'
    line.set_label(
        f'fit, FWHM={2*np.sqrt(2*np.log(2))*minimization.params[sig_name].value:.2f}nm'
    )

gu.savefig(savedir=savedir,
           figure=fig,
           axes=(ax0, ax1, ax2),
           tick_width=tick_width,
           tick_length=tick_length,
           tick_labelsize=16,
           xlabels='width (nm)',
           ylabels='psf (a.u.)',
Exemple #3
0
                  fit_params,
                  args=(combined_xaxis, combined_data, lineshape))
report_fit(result.params)

#####################
# plot data and fit #
#####################
fig, ax = plt.subplots(1, 1)
if scale == 'linear':
    ax.plot(distances, average, 'r')
else:
    ax.plot(distances, np.log10(average), 'r')
plt.legend(['data'])
for idx in range(nb_ranges):
    y_fit = util.function_lmfit(params=result.params,
                                iterator=idx,
                                x_axis=distances,
                                distribution=lineshape)
    if scale == 'linear':
        ax.plot(distances, y_fit, '-')
    else:
        ax.plot(distances, np.log10(y_fit), '-')
ax.set_xlim(xlim[0], xlim[1])
ax.set_ylim(ylim[0], ylim[1])
ax.set_xlabel('q (1/nm)')
ax.set_ylabel('Angular average (A.U.)')
try:
    fig.text(0.15,
             0.95,
             'cen_1 = ' + str('{:.5f}'.format(result.params['cen_1'].value)) +
             '+/-' + str('{:.5f}'.format(result.params['cen_1'].stderr)) +
             '   sig_1 = ' +
    fit_params.add('loc_1', value=0, min=-0.1, max=0.1)
    fit_params.add('sig_1', value=0.0005, min=0.0000001, max=0.1)
    fit_params.add('alpha_1', value=0, min=-10, max=10)
else:  # 'pseudovoigt'
    fit_params.add('amp_1', value=0.0005, min=0.000001, max=10000)
    fit_params.add('cen_1', value=0, min=-0.1, max=0.1)
    fit_params.add('sig_1', value=0.0005, min=0.0000001, max=0.1)
    fit_params.add('ratio_1', value=0.5, min=0, max=1)

# run the global fit to all the data sets
result = minimize(util.objective_lmfit,
                  fit_params,
                  args=(x_axis, hist, fit_pdf))
report_fit(result.params)
strain_fit = util.function_lmfit(params=result.params,
                                 x_axis=x_axis,
                                 distribution=fit_pdf)

if fit_pdf == 'skewed_gaussian':  # find the position of the mode (maximum of the pdf)
    x_mode = np.unravel_index(strain_fit.argmax(), x_axis.shape)
    step = x_axis[x_mode] - x_axis[x_mode[0] - 1]
    fine_x = np.copy(x_axis)
    for idx in range(2):
        fine_x = np.linspace(fine_x[x_mode] - step,
                             fine_x[x_mode] + step,
                             endpoint=True,
                             num=1000)
        fine_y = util.function_lmfit(params=result.params,
                                     x_axis=fine_x,
                                     distribution=fit_pdf)
        diff_fit = np.gradient(fine_y, fine_x[1] - fine_x[0])