def extract(feature1: AcousticFeature, feature2: AcousticFeature, dtype='int64'):
        aligner = MelCepstrumAligner(feature1.mc, feature2.mc)
        indexes1 = (aligner.normed_path_x * len(feature1.mc)).astype(dtype)
        indexes2 = (aligner.normed_path_y * len(feature2.mc)).astype(dtype)

        align_indexes = AlignIndexes(
            feature1=feature1,
            feature2=feature2,
            indexes1=indexes1,
            indexes2=indexes2,
        )
        return align_indexes
def generate_feature(path1, path2):
    out1 = Path(arguments.output1_directory, path1.stem + '.npy')
    out2 = Path(arguments.output2_directory, path2.stem + '.npy')
    if out1.exists() and out2.exists() and not arguments.enable_overwrite:
        return

    # load wave and padding
    wave_file_load_process = WaveFileLoadProcess(
        sample_rate=arguments.sample_rate,
        top_db=arguments.top_db,
        pad_second=arguments.pad_second,
    )
    wave1 = wave_file_load_process(path1, test=True)
    wave2 = wave_file_load_process(path2, test=True)

    # make acoustic feature
    acoustic_feature_process1 = AcousticFeatureProcess(
        frame_period=arguments.frame_period,
        order=arguments.order,
        alpha=arguments.alpha,
        f0_estimating_method=arguments.f0_estimating_method,
        f0_floor=arguments.f0_floor1,
        f0_ceil=arguments.f0_ceil1,
    )
    acoustic_feature_process2 = AcousticFeatureProcess(
        frame_period=arguments.frame_period,
        order=arguments.order,
        alpha=arguments.alpha,
        f0_estimating_method=arguments.f0_estimating_method,
        f0_floor=arguments.f0_floor2,
        f0_ceil=arguments.f0_ceil2,
    )
    f1 = acoustic_feature_process1(wave1,
                                   test=True).astype_only_float(numpy.float32)
    f2 = acoustic_feature_process2(wave2,
                                   test=True).astype_only_float(numpy.float32)

    # pre convert
    if pre_convert:
        f1_ref = pre_converter1.convert_to_feature(f1)
    else:
        f1_ref = f1

    # alignment
    if not arguments.disable_alignment:
        aligner = MelCepstrumAligner(f1_ref.mfcc, f2.mfcc)

        f0_1, f0_2 = aligner.align(f1.f0, f2.f0)
        spectrogram_1, spectrogram_2 = aligner.align(f1.spectrogram,
                                                     f2.spectrogram)
        aperiodicity_1, aperiodicity_2 = aligner.align(f1.aperiodicity,
                                                       f2.aperiodicity)
        mfcc_1, mfcc_2 = aligner.align(f1.mfcc, f2.mfcc)
        voiced_1, voiced_2 = aligner.align(f1.voiced, f2.voiced)

        f1 = AcousticFeature(
            f0=f0_1,
            spectrogram=spectrogram_1,
            aperiodicity=aperiodicity_1,
            mfcc=mfcc_1,
            voiced=voiced_1,
        )
        f2 = AcousticFeature(
            f0=f0_2,
            spectrogram=spectrogram_2,
            aperiodicity=aperiodicity_2,
            mfcc=mfcc_2,
            voiced=voiced_2,
        )

        f1.validate()
        f2.validate()

    # save
    acoustic_feature_save_process = AcousticFeatureSaveProcess(
        validate=True, ignore=arguments.ignore_feature)
    acoustic_feature_save_process({'path': out1, 'feature': f1})
    print('saved!', out1)

    acoustic_feature_save_process({'path': out2, 'feature': f2})
    print('saved!', out2)
def generate_feature(path1, path2):
    out1 = Path(arguments.output1_directory, path1.stem + '.npy')
    out2 = Path(arguments.output2_directory, path2.stem + '.npy')
    if out1.exists() and out2.exists() and not arguments.enable_overwrite:
        return

    # load wave and padding
    wave_file_load_process = WaveFileLoadProcess(
        sample_rate=arguments.sample_rate,
        top_db=arguments.top_db,
        pad_second=arguments.pad_second,
    )
    wave1 = wave_file_load_process(path1, test=True)
    wave2 = wave_file_load_process(path2, test=True)

    # make acoustic feature
    acoustic_feature_process1 = AcousticFeatureProcess(
        frame_period=arguments.frame_period,
        order=arguments.order,
        alpha=arguments.alpha,
        f0_estimating_method=arguments.f0_estimating_method,
        f0_floor=arguments.f0_floor1,
        f0_ceil=arguments.f0_ceil1,
    )
    acoustic_feature_process2 = AcousticFeatureProcess(
        frame_period=arguments.frame_period,
        order=arguments.order,
        alpha=arguments.alpha,
        f0_estimating_method=arguments.f0_estimating_method,
        f0_floor=arguments.f0_floor2,
        f0_ceil=arguments.f0_ceil2,
    )
    f1 = acoustic_feature_process1(wave1, test=True).astype_only_float(numpy.float32)
    f2 = acoustic_feature_process2(wave2, test=True).astype_only_float(numpy.float32)

    # pre convert
    if pre_convert:
        f1_ref = pre_converter1.convert_to_feature(f1)
    else:
        f1_ref = f1

    # alignment
    if not arguments.disable_alignment:
        aligner = MelCepstrumAligner(f1_ref.mfcc, f2.mfcc)

        f0_1, f0_2 = aligner.align(f1.f0, f2.f0)
        spectrogram_1, spectrogram_2 = aligner.align(f1.spectrogram, f2.spectrogram)
        aperiodicity_1, aperiodicity_2 = aligner.align(f1.aperiodicity, f2.aperiodicity)
        mfcc_1, mfcc_2 = aligner.align(f1.mfcc, f2.mfcc)
        voiced_1, voiced_2 = aligner.align(f1.voiced, f2.voiced)

        f1 = AcousticFeature(
            f0=f0_1,
            spectrogram=spectrogram_1,
            aperiodicity=aperiodicity_1,
            mfcc=mfcc_1,
            voiced=voiced_1,
        )
        f2 = AcousticFeature(
            f0=f0_2,
            spectrogram=spectrogram_2,
            aperiodicity=aperiodicity_2,
            mfcc=mfcc_2,
            voiced=voiced_2,
        )

        f1.validate()
        f2.validate()

    # save
    acoustic_feature_save_process = AcousticFeatureSaveProcess(validate=True, ignore=arguments.ignore_feature)
    acoustic_feature_save_process({'path': out1, 'feature': f1})
    print('saved!', out1)

    acoustic_feature_save_process({'path': out2, 'feature': f2})
    print('saved!', out2)