Exemple #1
0
    def test_targeting(self):
        """Test targeting."""
        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = len(groups)
        alpha = [.01, .02, .03, .04, .05, .06]
        beta = [.07, .08, .09, .1, .11, .12]
        delta = [.13, .14, .15, .16, .17, .18]
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks))
        bvecs = np.ones((ncat+1, nstocks))
        dvecs = np.ones((ncat+1, nstocks))
        avecs[0] = alpha[:4]
        avecs[1, :2] *= alpha[-2]
        avecs[1, 2:] *= alpha[-1]
        bvecs[0] = beta[:4]
        bvecs[1, :2] *= beta[-2]
        bvecs[1, 2:] *= beta[-1]
        dvecs[0] = delta[:4]
        dvecs[1, :2] *= delta[-2]
        dvecs[1, 2:] *= delta[-1]

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        restriction = 'h**o'
        target = param.get_uvar()

        param = ParamSpatial.from_abt(avecs=avecs, bvecs=bvecs, groups=groups,
                                      target=target, restriction=restriction,
                                      solve_dvecs=True)
        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs,
                                       dvecs=param.dvecs,
                                       groups=groups)
Exemple #2
0
    def test_from_abcmat(self):
        """Test spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        weights = ParamSpatial.get_weight(groups)
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        amat = np.diag(avecs[0]) + np.diag(avecs[0]).dot(weights[0])
        bmat = np.diag(bvecs[0]) + np.diag(bvecs[0]).dot(weights[0])
        dmat = np.eye(nstocks) - np.diag(dvecs[1]).dot(weights[0])
        dmat_inv = scl.inv(dmat)
        cmat = dmat_inv.dot(np.diag(dvecs[0])).dot(dmat_inv)

        param = ParamSpatial.from_abcmat(avecs=avecs, bvecs=bvecs, cmat=cmat,
                                         groups=groups)


        npt.assert_array_equal(amat, param.amat)
        npt.assert_array_equal(bmat, param.bmat)
        npt.assert_array_equal(cmat, param.cmat)
        npt.assert_array_equal(avecs, param.avecs)
        npt.assert_array_equal(bvecs, param.bvecs)
        npt.assert_array_equal(None, param.dvecs)
        npt.assert_array_equal(weights, param.weights)
Exemple #3
0
    def test_from_theta_shomo(self):
        """Test init from theta for spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = len(groups)
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        restriction = 'shomo'
        target = None
        theta = [avecs[:, 0], bvecs[:, 0], dvecs[0], dvecs[1:, 0]]
        theta = np.concatenate(theta)
        param_new = ParamSpatial.from_theta(theta=theta, groups=groups,
                                            restriction=restriction,
                                            target=target)

        npt.assert_array_equal(param.amat, param_new.amat)
        npt.assert_array_equal(param.bmat, param_new.bmat)
        npt.assert_array_equal(param.cmat, param_new.cmat)
        npt.assert_array_equal(param.avecs, param_new.avecs)
        npt.assert_array_equal(param.bvecs, param_new.bvecs)
        npt.assert_array_equal(param.dvecs, param_new.dvecs)

        target = param.get_uvar()
        theta = [avecs[:, 0], bvecs[:, 0]]
        theta = np.concatenate(theta)
        cmat = param.find_cmat(amat=param.amat, bmat=param.bmat, target=target)
        param_new = ParamSpatial.from_theta(theta=theta, groups=groups,
                                            restriction=restriction,
                                            target=target)

        npt.assert_array_equal(param.amat, param_new.amat)
        npt.assert_array_equal(param.bmat, param_new.bmat)
        npt.assert_array_equal(cmat, param_new.cmat)
        npt.assert_array_equal(param.avecs, param_new.avecs)
        npt.assert_array_equal(param.bvecs, param_new.bvecs)
#        npt.assert_array_equal(None, param_new.dvecs)

        cfree = True
        theta = [avecs[:, 0], bvecs[:, 0],
                 param.cmat[np.tril_indices(nstocks)]]
        theta = np.concatenate(theta)
        param_new = ParamSpatial.from_theta(theta=theta, groups=groups,
                                            restriction=restriction,
                                            cfree=cfree)

        npt.assert_array_equal(param.amat, param_new.amat)
        npt.assert_array_equal(param.bmat, param_new.bmat)
        npt.assert_array_equal(np.tril(param.cmat), param_new.cmat)
        npt.assert_array_equal(param.avecs, param_new.avecs)
        npt.assert_array_equal(param.bvecs, param_new.bvecs)
        npt.assert_array_equal(None, param_new.dvecs)
Exemple #4
0
    def test_from_theta_ghomo_special(self):
        """Test group init from theta for spatial specification."""

        nstocks = 4
        groups = [[(0, 1, 2, 3)]]
        ncat = len(groups)
        alpha = [.01, .02, .03, .04, .05]
        beta = [.07, .08, .09, .1, .11]
        delta = [.13, .14, .15, .16, .17]
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks))
        bvecs = np.ones((ncat+1, nstocks))
        dvecs = np.ones((ncat+1, nstocks))
        avecs[0] = alpha[:4]
        avecs[1] *= alpha[-1]
        bvecs[0] = beta[:4]
        bvecs[1] *= beta[-1]
        dvecs[0] = delta[:4]
        dvecs[1] *= delta[-1]

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        target = param.get_uvar()
        theta = np.concatenate([alpha, beta])
        cmat = param.find_cmat(amat=param.amat, bmat=param.bmat, target=target)
        uvar = param.find_stationary_var(amat=param.amat, bmat=param.bmat,
                                         cmat=cmat)
        npt.assert_array_almost_equal(target, uvar)

        restriction = 'h**o'
        param_homo = ParamSpatial.from_theta(theta=theta, groups=groups,
                                             restriction=restriction,
                                             target=target)
        theta_homo = param_homo.get_theta(restriction=restriction,
                                          use_target=False)

        restriction = 'ghomo'
        param_ghomo = ParamSpatial.from_theta(theta=theta, groups=groups,
                                              restriction=restriction,
                                              target=target)
        theta_ghomo = param_ghomo.get_theta(restriction=restriction,
                                            use_target=False)

        npt.assert_array_almost_equal(cmat, param.cmat)
        npt.assert_array_almost_equal(theta_ghomo, theta_homo, decimal=3)
        for param_check in [param_homo, param_ghomo]:
            npt.assert_array_equal(param.avecs, param_check.avecs)
            npt.assert_array_equal(param.bvecs, param_check.bvecs)
            npt.assert_array_equal(param.amat, param_check.amat)
            npt.assert_array_equal(param.bmat, param_check.bmat)
            npt.assert_array_equal(cmat, param_check.cmat)
Exemple #5
0
def try_interative_estimation_spatial():
    """Try estimating parameters from simple to more complicated model.

    """
    restriction = 'full'
    nobs = 2000
    groups = [[(0, 2), (1, 3)]]
    nstocks = np.max(groups) + 1
    ncat = len(groups)
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .0
    # A, B, C - n x n matrices
    avecs = np.ones((ncat + 1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat + 1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.ones((ncat, nstocks)) * gamma**.5
    vvec = np.ones(nstocks)

    param_true = ParamSpatial.from_abdv(avecs=avecs,
                                        bvecs=bvecs,
                                        dvecs=dvecs,
                                        vvec=vvec,
                                        groups=groups)
    print(param_true)
    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    bekk = BEKK(innov)
    result = bekk.estimate(use_target=False,
                           restriction=restriction,
                           cfree=False,
                           model='spatial',
                           groups=groups)
    print(result)
Exemple #6
0
    def test_simulation_spatial(self):
        """Test simulation spatial."""

        nobs = 10
        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat + 1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat + 1, nstocks)) * beta**.5
        dvecs = np.vstack(
            [np.ones((1, nstocks)),
             np.ones((ncat, nstocks)) * gamma**.5])

        param = ParamSpatial.from_abdv(avecs=avecs,
                                       bvecs=bvecs,
                                       dvecs=dvecs,
                                       groups=groups)

        for distr in ['normal', 'student', 'skewt']:
            innov, hvar = simulate_bekk(param, nobs=nobs, distr=distr)

            self.assertEqual(innov.shape, (nobs, nstocks))
            self.assertEqual(hvar.shape, (nobs, nstocks, nstocks))
Exemple #7
0
def try_interative_estimation_spatial():
    """Try estimating parameters from simple to more complicated model.

    """
    restriction = 'full'
    nobs = 2000
    groups = [[(0, 2), (1, 3)]]
    nstocks = np.max(groups) + 1
    ncat = len(groups)
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .0
    # A, B, C - n x n matrices
    avecs = np.ones((ncat+1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat+1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.ones((ncat, nstocks)) * gamma**.5
    vvec = np.ones(nstocks)

    param_true = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                        vvec=vvec, groups=groups)
    print(param_true)
    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    bekk = BEKK(innov)
    result = bekk.estimate(use_target=False, restriction=restriction,
                           cfree=False, model='spatial', groups=groups)
    print(result)
Exemple #8
0
    def test_from_theta_ghomo(self):
        """Test group init from theta for spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = len(groups)
        alpha = [.01, .02, .03, .04, .05, .06]
        beta = [.07, .08, .09, .1, .11, .12]
        delta = [.13, .14, .15, .16, .17, .18]
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks))
        bvecs = np.ones((ncat+1, nstocks))
        dvecs = np.ones((ncat+1, nstocks))
        avecs[0] = alpha[:4]
        avecs[1, :2] *= alpha[-2]
        avecs[1, 2:] *= alpha[-1]
        bvecs[0] = beta[:4]
        bvecs[1, :2] *= beta[-2]
        bvecs[1, 2:] *= beta[-1]
        dvecs[0] = delta[:4]
        dvecs[1, :2] *= delta[-2]
        dvecs[1, 2:] *= delta[-1]

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        restriction = 'ghomo'
        target = param.get_uvar()
        theta = np.concatenate([alpha, beta])
        cmat = param.find_cmat(amat=param.amat, bmat=param.bmat, target=target)
        uvar = param.find_stationary_var(amat=param.amat, bmat=param.bmat,
                                         cmat=cmat)
        npt.assert_array_almost_equal(target, uvar)

        param_new = ParamSpatial.from_theta(theta=theta, groups=groups,
                                            restriction=restriction,
                                            target=target)

        npt.assert_array_equal(param.avecs, param_new.avecs)
        npt.assert_array_equal(param.bvecs, param_new.bvecs)
#        npt.assert_array_equal(None, param_new.dvecs)
        npt.assert_array_equal(param.amat, param_new.amat)
        npt.assert_array_equal(param.bmat, param_new.bmat)
        npt.assert_array_equal(cmat, param_new.cmat)
        npt.assert_array_almost_equal(cmat, param.cmat)
Exemple #9
0
def try_spatial():
    """Try simulating and estimating spatial BEKK.

    """
    cfree = False
    restriction = 'h**o'
    nobs = 2000
    groups = [[(0, 1), (2, 3)]]
    nstocks = np.max(groups) + 1
    ncat = len(groups)
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .09
    # A, B, C - n x n matrices
    avecs = np.ones((ncat + 1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat + 1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.vstack(
        [np.ones((1, nstocks)),
         np.ones((ncat, nstocks)) * gamma**.5])

    param_true = ParamSpatial.from_abdv(avecs=avecs,
                                        bvecs=bvecs,
                                        dvecs=dvecs,
                                        groups=groups)
    print(param_true)

    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    #    plot_data(innov, hvar_true)

    bekk = BEKK(innov)

    for use_target in [True, False]:

        result = bekk.estimate(param_start=param_true,
                               use_target=use_target,
                               cfree=cfree,
                               restriction=restriction,
                               groups=groups,
                               model='spatial',
                               method='SLSQP',
                               cython=True)

        print(result)

        theta_true = param_true.get_theta(use_target=use_target,
                                          cfree=cfree,
                                          restriction=restriction)
        theta_final = result.param_final.get_theta(use_target=use_target,
                                                   cfree=cfree,
                                                   restriction=restriction)
        norm = np.linalg.norm(theta_true - theta_final)

        print('\nParameters (true and estimated):')
        print(np.vstack([theta_true, theta_final]).T)
        print('\nEucledean norm of the difference = %.4f' % norm)
Exemple #10
0
    def init_param_spatial(self, restriction='shomo', groups=None,
                           use_target=False, method='SLSQP', cfree=False,
                           use_penalty=False):
        """Estimate scalar BEKK with variance targeting.

        Parameters
        ----------
        restriction : str
            Restriction on parameters.

            Must be
                - 'hetero' (heterogeneous)
                - 'ghomo' (group homogeneous)
                - 'h**o' (homogeneous)
                - 'shomo' (scalar homogeneous)

        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        groups : list of lists of tuples
            Encoded groups of items
        method : str
            Optimization method. See scipy.optimize.minimize

        Returns
        -------
        ParamSpatial instance
            Parameter object

        """
        param = ParamSpatial.from_groups(groups=groups,
                                         target=estimate_uvar(self.innov),
                                         abstart=(.2, .7))

        if restriction == 'shomo':
            return param

        kwargs = {'use_target': False, 'groups': groups,
                  'use_target': use_target,
                  'use_penalty': use_penalty, 'model': 'spatial',
                  'cfree': cfree, 'method': method}
        est_partial = partial(self.estimate, **kwargs)

        if restriction in ('h**o', 'ghomo', 'hetero'):
            result = est_partial(param_start=param, restriction='shomo')
            param = result.param_final

        if restriction in ('ghomo', 'hetero'):
            result = est_partial(param_start=param, restriction='h**o')
            param = result.param_final

        if restriction in ('hetero'):
            result = est_partial(param_start=param, restriction='ghomo')
            param = result.param_final

        return param
Exemple #11
0
    def test_init_empty(self):
        """Test spatial specification."""

        nstocks = 3
        param = ParamSpatial(nstocks=nstocks)

        self.assertEqual(param.amat.shape, (nstocks, nstocks))
        self.assertEqual(param.bmat.shape, (nstocks, nstocks))
        self.assertEqual(param.cmat.shape, (nstocks, nstocks))
        self.assertEqual(param.avecs.shape, (2, nstocks))
        self.assertEqual(param.bvecs.shape, (2, nstocks))
        self.assertEqual(param.dvecs.shape, (2, nstocks))
        self.assertEqual(param.weights.shape, (1, nstocks, nstocks))
Exemple #12
0
    def test_get_weight(self):
        """Test construction of spatial weights from groups.

        """
        groups = [[(0, 1), (2, 3)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.zeros((1, 4, 4))
        weight_exp[0, 0, 1] = 1
        weight_exp[0, 1, 0] = 1
        weight_exp[0, 2, 3] = 1
        weight_exp[0, 3, 2] = 1

        npt.assert_almost_equal(weight, weight_exp)

        groups = [[(0, 1, 2)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.array([[[0, .5, .5], [.5, 0, .5], [.5, .5, 0]]])

        npt.assert_almost_equal(weight, weight_exp)

        groups = [[(0, 1), (2, 3)], [(0, 2), (1, 3)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.zeros((len(groups), 4, 4))
        weight_exp[0, :2, :2] = np.array([[0, 1], [1, 0]])
        weight_exp[0, 2:, 2:] = np.array([[0, 1], [1, 0]])
        weight_exp[1, 0:3:2, 0:3:2] = np.array([[0, 1], [1, 0]])
        weight_exp[1, 1:4:2, 1:4:2] = np.array([[0, 1], [1, 0]])

        npt.assert_almost_equal(weight, weight_exp)

        groups = [[(0, 1), (2, 3, 4)]]
        weight = ParamSpatial.get_weight(groups=groups)
        weight_exp = np.zeros((len(groups), 5, 5))
        weight_exp[0, :2, :2] = np.array([[0, 1], [1, 0]])
        weight_exp[0, 2:, 2:] = np.array([[[0, .5, .5], [.5, 0, .5],
                                          [.5, .5, 0]]])

        npt.assert_almost_equal(weight, weight_exp)
Exemple #13
0
    def test_get_theta_homo(self):
        """Test theta vector for spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        restriction = 'h**o'
        use_target = True
        theta = [avecs[0], avecs[1:, 0], bvecs[0], bvecs[1:, 0]]
        theta = np.concatenate(theta)
        nparams = 2 * (nstocks + ncat)
        theta_exp = param.get_theta(restriction=restriction,
                                    use_target=use_target)

        self.assertEqual(nparams, theta_exp.size)
        self.assertEqual(nparams, theta.size)
        npt.assert_array_equal(theta, theta_exp)

        use_target = False
        theta = [avecs[0], avecs[1:, 0], bvecs[0], bvecs[1:, 0],
                 dvecs[0], dvecs[1:, 0]]
        theta = np.concatenate(theta)
        nparams = 3 * (nstocks + ncat)
        theta_exp = param.get_theta(restriction=restriction,
                                    use_target=use_target)

        self.assertEqual(nparams, theta_exp.size)
        self.assertEqual(nparams, theta.size)
        npt.assert_array_equal(theta, theta_exp)

        cfree = True
        theta = [avecs[0], avecs[1:, 0], bvecs[0], bvecs[1:, 0],
                 param.cmat[np.tril_indices(param.cmat.shape[0])]]
        theta = np.concatenate(theta)
        nparams = 2 * (nstocks + ncat) + nstocks * (nstocks + 1) // 2
        theta_exp = param.get_theta(restriction=restriction, cfree=cfree)

        self.assertEqual(nparams, theta_exp.size)
        self.assertEqual(nparams, theta.size)
        npt.assert_array_equal(theta, theta_exp)
Exemple #14
0
    def test_from_abt(self):
        """Test spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        weights = ParamSpatial.get_weight(groups)
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        amat = np.diag(avecs[0]) + np.diag(avecs[0]).dot(weights[0])
        bmat = np.diag(bvecs[0]) + np.diag(bvecs[0]).dot(weights[0])
        dmat = np.eye(nstocks) - np.diag(dvecs[1]).dot(weights[0])
        dmat_inv = scl.inv(dmat)
        ccmat = dmat_inv.dot(np.diag(dvecs[0])).dot(dmat_inv)
        cmat = scl.cholesky(ccmat, 1)
        target = ParamSpatial.find_stationary_var(amat=amat, bmat=bmat,
                                                  cmat=cmat)
        cmat_new = ParamSpatial.find_cmat(amat=amat, bmat=bmat, target=target)

        npt.assert_array_almost_equal(cmat[np.tril_indices(nstocks)],
                                      cmat_new[np.tril_indices(nstocks)])

        param = ParamSpatial.from_abt(avecs=avecs, bvecs=bvecs, target=target,
                                      groups=groups, restriction='hetero')

        npt.assert_array_equal(amat, param.amat)
        npt.assert_array_equal(bmat, param.bmat)
        npt.assert_array_almost_equal(cmat, param.cmat)
        npt.assert_array_equal(avecs, param.avecs)
        npt.assert_array_equal(bvecs, param.bvecs)
#        npt.assert_array_equal(None, param.dvecs)
        npt.assert_array_equal(weights, param.weights)
Exemple #15
0
def try_spatial():
    """Try simulating and estimating spatial BEKK.

    """
    cfree = False
    restriction = 'h**o'
    nobs = 2000
    groups = [[(0, 1), (2, 3)]]
    nstocks = np.max(groups) + 1
    ncat = len(groups)
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .09
    # A, B, C - n x n matrices
    avecs = np.ones((ncat+1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat+1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.vstack([np.ones((1, nstocks)),
                       np.ones((ncat, nstocks)) * gamma**.5])

    param_true = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                        groups=groups)
    print(param_true)

    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

#    plot_data(innov, hvar_true)

    bekk = BEKK(innov)

    for use_target in [True, False]:

        result = bekk.estimate(param_start=param_true, use_target=use_target,
                               cfree=cfree, restriction=restriction,
                               groups=groups, model='spatial', method='SLSQP',
                               cython=True)

        print(result)

        theta_true = param_true.get_theta(use_target=use_target, cfree=cfree,
                                          restriction=restriction)
        theta_final = result.param_final.get_theta(use_target=use_target,
                                                   cfree=cfree,
                                                   restriction=restriction)
        norm = np.linalg.norm(theta_true - theta_final)

        print('\nParameters (true and estimated):')
        print(np.vstack([theta_true, theta_final]).T)
        print('\nEucledean norm of the difference = %.4f' % norm)
Exemple #16
0
    def test_get_theta_from_ab(self):
        """Test theta vector for spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = 1
        alpha, beta, gamma = .01, .16, .09
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks)) * alpha**.5
        bvecs = np.ones((ncat+1, nstocks)) * beta**.5
        dvecs = np.vstack([np.ones((1, nstocks)),
                           np.ones((ncat, nstocks)) * gamma**.5])

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        restriction = 'hetero'
        theta = np.concatenate([avecs.flatten(), bvecs.flatten()])
        theta_exp = param.get_theta_from_ab(restriction=restriction)

        npt.assert_array_equal(theta, theta_exp)

        restriction = 'ghomo'
        theta = np.concatenate([avecs[0], avecs[1:, :2].flatten(),
                                bvecs[0], bvecs[1:, :2].flatten()])
        theta_exp = param.get_theta_from_ab(restriction=restriction)

        npt.assert_array_equal(theta, theta_exp)

        restriction = 'h**o'
        theta = np.concatenate([avecs[0], avecs[1:, 0],
                                bvecs[0], bvecs[1:, 0]])
        theta_exp = param.get_theta_from_ab(restriction=restriction)

        npt.assert_array_equal(theta, theta_exp)

        restriction = 'shomo'
        theta = np.concatenate([avecs[:, 0], bvecs[:, 0]])
        theta_exp = param.get_theta_from_ab(restriction=restriction)

        npt.assert_array_equal(theta, theta_exp)
Exemple #17
0
    def likelihood(self,
                   theta,
                   model='standard',
                   restriction='full',
                   target=None,
                   cfree=False,
                   groups=None,
                   cython=True,
                   use_penalty=False):
        """Compute the conditional log-likelihood function.

        Parameters
        ----------
        theta : 1dim array
            Dimension depends on the model restriction
        model : str
            Specific model to estimate.

            Must be
                - 'standard'
                - 'spatial'

        restriction : str
            Restriction on parameters.

            Must be
                - 'full'
                - 'diagonal'
                - 'scalar'

        target : (nstocks, nstocks) array
            Estimate of unconditional variance matrix
        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        groups : list of lists of tuples
            Encoded groups of items
        cython : bool
            Whether to use Cython optimizations (True) or not (False)
        use_penalty : bool
            Whether to include penalty term in the likelihood

        Returns
        -------
        float
            The value of the minus log-likelihood function.
            If some regularity conditions are violated, then it returns
            some obscene number.

        """
        try:
            if model == 'standard':
                param = ParamStandard.from_theta(theta=theta,
                                                 target=target,
                                                 nstocks=self.innov.shape[1],
                                                 restriction=restriction)
            elif model == 'spatial':
                param = ParamSpatial.from_theta(theta=theta,
                                                target=target,
                                                cfree=cfree,
                                                restriction=restriction,
                                                groups=groups)
            else:
                raise NotImplementedError('The model is not implemented!')

            # TODO: Temporary hack to exclude errors in optimization
            if isinstance(param, np.ndarray):
                return 1e10
            if param.constraint() >= 1:
                return 1e10
            # if param.uvar_bad():
            #     return 1e10

            args = [self.hvar, self.innov, param.amat, param.bmat, param.cmat]

            penalty = param.penalty() if use_penalty else 0

            if cython:
                filter_var(*args)
                nstocks = self.innov.shape[1]
                idxl = np.tril_indices(nstocks)
                idxu = np.triu_indices(nstocks)
                self.hvar[:, idxu[0], idxu[1]] = self.hvar[:, idxl[0], idxl[1]]
                return likelihood_gauss(self.hvar, self.innov) + penalty
            else:
                filter_var_python(*args)
                return likelihood_python(self.hvar, self.innov) + penalty
        except:
            return 1e10
Exemple #18
0
    def estimate_loop(self,
                      model='standard',
                      use_target=True,
                      groups=None,
                      restriction='scalar',
                      cfree=False,
                      method='SLSQP',
                      ngrid=2,
                      use_penalty=False):
        """Estimate parameters starting from a grid of a and b.

        Parameters
        ----------
        model : str
            Specific model to estimate.

            Must be
                - 'standard'
                - 'spatial'

        restriction : str
            Restriction on parameters.

            Must be
                - 'full' =  'diagonal'
                - 'group'
                - 'scalar'

        groups : list of lists of tuples
            Encoded groups of items
        use_target : bool
            Whether to use variance targeting (True) or not (False)
        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        method : str
            Optimization method. See scipy.optimize.minimize
        ngrid : int
            Number of starting values in one dimension
        use_penalty : bool
            Whether to include penalty term in the likelihood

        Returns
        -------
        BEKKResults instance
            Estimation results object

        """
        target = estimate_uvar(self.innov)
        nstocks = self.innov.shape[1]
        achoice = np.linspace(.01, .5, ngrid)
        bchoice = np.linspace(.1, .9, ngrid)
        out = dict()
        for abstart in itertools.product(achoice, bchoice):
            if model == 'spatial':
                param = ParamSpatial.from_groups(groups=groups,
                                                 target=target,
                                                 abstart=abstart)
            if model == 'standard':
                param = ParamStandard(nstocks=nstocks,
                                      target=target,
                                      abstart=abstart)
            if param.constraint() >= 1:
                continue
            result = self.estimate(param_start=param,
                                   method=method,
                                   use_target=use_target,
                                   cfree=cfree,
                                   model=model,
                                   restriction=restriction,
                                   groups=groups,
                                   use_penalty=use_penalty)
            out[abstart] = (result.opt_out.fun, result)

        df = pd.DataFrame.from_dict(out, orient='index')
        return df.sort_values(by=0).iloc[0, 1]
Exemple #19
0
    def init_param_spatial(self,
                           restriction='shomo',
                           groups=None,
                           use_target=False,
                           method='SLSQP',
                           cfree=False,
                           use_penalty=False):
        """Estimate scalar BEKK with variance targeting.

        Parameters
        ----------
        restriction : str
            Restriction on parameters.

            Must be
                - 'hetero' (heterogeneous)
                - 'ghomo' (group homogeneous)
                - 'h**o' (homogeneous)
                - 'shomo' (scalar homogeneous)

        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        groups : list of lists of tuples
            Encoded groups of items
        method : str
            Optimization method. See scipy.optimize.minimize

        Returns
        -------
        ParamSpatial instance
            Parameter object

        """
        param = ParamSpatial.from_groups(groups=groups,
                                         target=estimate_uvar(self.innov),
                                         abstart=(.2, .7))

        if restriction == 'shomo':
            return param

        kwargs = {
            'use_target': False,
            'groups': groups,
            'use_target': use_target,
            'use_penalty': use_penalty,
            'model': 'spatial',
            'cfree': cfree,
            'method': method
        }
        est_partial = partial(self.estimate, **kwargs)

        if restriction in ('h**o', 'ghomo', 'hetero'):
            result = est_partial(param_start=param, restriction='shomo')
            param = result.param_final

        if restriction in ('ghomo', 'hetero'):
            result = est_partial(param_start=param, restriction='h**o')
            param = result.param_final

        if restriction in ('hetero'):
            result = est_partial(param_start=param, restriction='ghomo')
            param = result.param_final

        return param
Exemple #20
0
    def estimate(self,
                 param_start=None,
                 restriction='scalar',
                 cfree=False,
                 use_target=False,
                 model='standard',
                 groups=None,
                 method='SLSQP',
                 cython=True,
                 use_penalty=False):
        """Estimate parameters of the BEKK model.

        Parameters
        ----------
        param_start : ParamStandard or ParamSpatial instance
            Starting parameters. See Notes for more details.
        model : str
            Specific model to estimate.

            Must be
                - 'standard'
                - 'spatial'

        restriction : str
            Restriction on parameters.

            Must be
                - 'full'
                - 'diagonal'
                - 'group' (only applicable with 'spatial' model)
                - 'scalar'

        use_target : bool
            Whether to use variance targeting (True) or not (False)
        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        groups : list of lists of tuples
            Encoded groups of items
        method : str
            Optimization method. See scipy.optimize.minimize
        cython : bool
            Whether to use Cython optimizations (True) or not (False)
        use_penalty : bool
            Whether to include penalty term in the likelihood

        Returns
        -------
        BEKKResults instance
            Estimation results object

        Notes
        -----

        If no param_start is given, the program will estimate parameters in
        the order 'from simple to more complicated' (from scalar to diagonal
        to full) while always using variance targeting.

        """
        # Start timer for the whole optimization
        time_start = time.time()

        # Check for incompatible inputs
        if use_target and cfree:
            raise ValueError('use_target and cfree are incompatible!')
#        if (groups is not None) and (model != 'spatial'):
#            raise ValueError('The model is incompatible with weights!')
# Update default settings
        nobs, nstocks = self.innov.shape
        var_target = estimate_uvar(self.innov)
        self.hvar = np.zeros((nobs, nstocks, nstocks), dtype=float)
        self.hvar[0] = var_target.copy()

        # Check for existence of initial guess among arguments.
        # Otherwise, initialize.
        if param_start is None:
            common = {
                'restriction': restriction,
                'method': method,
                'use_penalty': use_penalty,
                'use_target': use_target
            }
            if model == 'standard':
                param_start = self.init_param_standard(**common)
            elif model == 'spatial':
                param_start = self.init_param_spatial(groups=groups,
                                                      cfree=cfree,
                                                      **common)
            else:
                raise NotImplementedError('The model is not implemented!')

        # Get vector of parameters to start optimization
        theta_start = param_start.get_theta(restriction=restriction,
                                            use_target=use_target,
                                            cfree=cfree)
        if use_target:
            target = var_target
        else:
            target = None

        # Optimization options
        options = {'disp': False, 'maxiter': int(1e6)}
        if method == 'Nelder-Mead':
            options['maxfev'] = 3000
        # Likelihood arguments
        kwargs = {
            'model': model,
            'target': target,
            'cfree': cfree,
            'restriction': restriction,
            'groups': groups,
            'cython': cython,
            'use_penalty': use_penalty
        }
        # Likelihood function
        likelihood = partial(self.likelihood, **kwargs)

        # Run optimization
        if method == 'basin':
            opt_out = basinhopping(likelihood,
                                   theta_start,
                                   niter=100,
                                   disp=options['disp'],
                                   minimizer_kwargs={'method': 'Nelder-Mead'})
        else:
            opt_out = minimize(likelihood,
                               theta_start,
                               method=method,
                               options=options)
        # How much time did it take in minutes?
        time_delta = time.time() - time_start

        # Store optimal parameters in the corresponding class
        if model == 'standard':
            param_final = ParamStandard.from_theta(theta=opt_out.x,
                                                   restriction=restriction,
                                                   target=target,
                                                   nstocks=nstocks)
        elif model == 'spatial':
            param_final = ParamSpatial.from_theta(theta=opt_out.x,
                                                  restriction=restriction,
                                                  target=target,
                                                  cfree=cfree,
                                                  groups=groups)
        else:
            raise NotImplementedError('The model is not implemented!')

        return BEKKResults(innov=self.innov,
                           hvar=self.hvar,
                           cython=cython,
                           var_target=var_target,
                           model=model,
                           method=method,
                           use_target=use_target,
                           cfree=cfree,
                           restriction=restriction,
                           param_start=param_start,
                           param_final=param_final,
                           time_delta=time_delta,
                           opt_out=opt_out)
Exemple #21
0
def try_spatial_combinations():
    """Try simulating spatial BEKK
    and estimating it with both spatial and standard.

    """
    use_target = False
    cfree = True
    restriction = 'full'
    nstocks = 3
    nobs = 2000
    groups = [(0, 1)]
    weights = ParamSpatial.get_weight(groups=groups, nitems=nstocks)
    ncat = weights.shape[0]
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .0
    # A, B, C - n x n matrices
    avecs = np.ones((ncat + 1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat + 1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.ones((ncat, nstocks)) * gamma**.5
    vvec = np.ones(nstocks)

    param_true = ParamSpatial.from_spatial(avecs=avecs,
                                           bvecs=bvecs,
                                           dvecs=dvecs,
                                           vvec=vvec,
                                           weights=weights)
    print(param_true)

    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    bekk = BEKK(innov)

    # -------------------------------------------------------------------------
    # Estimate spatial

    result = bekk.estimate(param_start=param_true,
                           use_target=use_target,
                           restriction=restriction,
                           cfree=cfree,
                           model='spatial',
                           weights=weights,
                           method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target,
                                      cfree=cfree,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               cfree=cfree,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)

    # -------------------------------------------------------------------------
    # Estimate standard

    param_true = ParamStandard.from_abc(amat=param_true.amat,
                                        bmat=param_true.bmat,
                                        cmat=param_true.cmat)

    result = bekk.estimate(param_start=param_true,
                           use_target=use_target,
                           restriction=restriction,
                           cfree=cfree,
                           model='standard',
                           weights=weights,
                           method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)
Exemple #22
0
    def estimate(self, param_start=None, restriction='scalar', cfree=False,
                 use_target=False, model='standard', groups=None,
                 method='SLSQP', cython=True, use_penalty=False):
        """Estimate parameters of the BEKK model.

        Parameters
        ----------
        param_start : ParamStandard or ParamSpatial instance
            Starting parameters. See Notes for more details.
        model : str
            Specific model to estimate.

            Must be
                - 'standard'
                - 'spatial'

        restriction : str
            Restriction on parameters.

            Must be
                - 'full'
                - 'diagonal'
                - 'group' (only applicable with 'spatial' model)
                - 'scalar'

        use_target : bool
            Whether to use variance targeting (True) or not (False)
        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        groups : list of lists of tuples
            Encoded groups of items
        method : str
            Optimization method. See scipy.optimize.minimize
        cython : bool
            Whether to use Cython optimizations (True) or not (False)
        use_penalty : bool
            Whether to include penalty term in the likelihood

        Returns
        -------
        BEKKResults instance
            Estimation results object

        Notes
        -----

        If no param_start is given, the program will estimate parameters in
        the order 'from simple to more complicated' (from scalar to diagonal
        to full) while always using variance targeting.

        """
        # Start timer for the whole optimization
        time_start = time.time()

        # Check for incompatible inputs
        if use_target and cfree:
            raise ValueError('use_target and cfree are incompatible!')
#        if (groups is not None) and (model != 'spatial'):
#            raise ValueError('The model is incompatible with weights!')
        # Update default settings
        nobs, nstocks = self.innov.shape
        var_target = estimate_uvar(self.innov)
        self.hvar = np.zeros((nobs, nstocks, nstocks), dtype=float)
        self.hvar[0] = var_target.copy()

        # Check for existence of initial guess among arguments.
        # Otherwise, initialize.
        if param_start is None:
            common = {'restriction': restriction, 'method': method,
                      'use_penalty': use_penalty, 'use_target': use_target}
            if model == 'standard':
                param_start = self.init_param_standard(**common)
            elif model == 'spatial':
                param_start = self.init_param_spatial(groups=groups,
                                                      cfree=cfree, **common)
            else:
                raise NotImplementedError('The model is not implemented!')

        # Get vector of parameters to start optimization
        theta_start = param_start.get_theta(restriction=restriction,
                                            use_target=use_target, cfree=cfree)
        if use_target:
            target = var_target
        else:
            target = None

        # Optimization options
        options = {'disp': False, 'maxiter': int(1e6)}
        if method == 'Nelder-Mead':
            options['maxfev'] = 3000
        # Likelihood arguments
        kwargs = {'model': model, 'target': target, 'cfree': cfree,
                  'restriction': restriction, 'groups': groups,
                  'cython': cython, 'use_penalty': use_penalty}
        # Likelihood function
        likelihood = partial(self.likelihood, **kwargs)

        # Run optimization
        if method == 'basin':
            opt_out = basinhopping(likelihood, theta_start, niter=100,
                                   disp=options['disp'],
                                   minimizer_kwargs={'method': 'Nelder-Mead'})
        else:
            opt_out = minimize(likelihood, theta_start,
                               method=method, options=options)
        # How much time did it take in minutes?
        time_delta = time.time() - time_start

        # Store optimal parameters in the corresponding class
        if model == 'standard':
            param_final = ParamStandard.from_theta(theta=opt_out.x,
                                                   restriction=restriction,
                                                   target=target,
                                                   nstocks=nstocks)
        elif model == 'spatial':
            param_final = ParamSpatial.from_theta(theta=opt_out.x,
                                                  restriction=restriction,
                                                  target=target, cfree=cfree,
                                                  groups=groups)
        else:
            raise NotImplementedError('The model is not implemented!')

        return BEKKResults(innov=self.innov, hvar=self.hvar, cython=cython,
                           var_target=var_target, model=model, method=method,
                           use_target=use_target, cfree=cfree,
                           restriction=restriction,
                           param_start=param_start, param_final=param_final,
                           time_delta=time_delta, opt_out=opt_out)
Exemple #23
0
    def estimate_loop(self, model='standard', use_target=True, groups=None,
                      restriction='scalar', cfree=False,
                      method='SLSQP', ngrid=2, use_penalty=False):
        """Estimate parameters starting from a grid of a and b.

        Parameters
        ----------
        model : str
            Specific model to estimate.

            Must be
                - 'standard'
                - 'spatial'

        restriction : str
            Restriction on parameters.

            Must be
                - 'full' =  'diagonal'
                - 'group'
                - 'scalar'

        groups : list of lists of tuples
            Encoded groups of items
        use_target : bool
            Whether to use variance targeting (True) or not (False)
        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        method : str
            Optimization method. See scipy.optimize.minimize
        ngrid : int
            Number of starting values in one dimension
        use_penalty : bool
            Whether to include penalty term in the likelihood

        Returns
        -------
        BEKKResults instance
            Estimation results object

        """
        target = estimate_uvar(self.innov)
        nstocks = self.innov.shape[1]
        achoice = np.linspace(.01, .5, ngrid)
        bchoice = np.linspace(.1, .9, ngrid)
        out = dict()
        for abstart in itertools.product(achoice, bchoice):
            if model == 'spatial':
                param = ParamSpatial.from_groups(groups=groups,
                                                 target=target,
                                                 abstart=abstart)
            if model == 'standard':
                param = ParamStandard(nstocks=nstocks, target=target,
                                      abstart=abstart)
            if param.constraint() >= 1:
                continue
            result = self.estimate(param_start=param, method=method,
                                   use_target=use_target, cfree=cfree,
                                   model=model, restriction=restriction,
                                   groups=groups, use_penalty=use_penalty)
            out[abstart] = (result.opt_out.fun, result)

        df = pd.DataFrame.from_dict(out, orient='index')
        return df.sort_values(by=0).iloc[0, 1]
Exemple #24
0
    def likelihood(self, theta, model='standard', restriction='full',
                   target=None, cfree=False, groups=None, cython=True,
                   use_penalty=False):
        """Compute the conditional log-likelihood function.

        Parameters
        ----------
        theta : 1dim array
            Dimension depends on the model restriction
        model : str
            Specific model to estimate.

            Must be
                - 'standard'
                - 'spatial'

        restriction : str
            Restriction on parameters.

            Must be
                - 'full'
                - 'diagonal'
                - 'scalar'

        target : (nstocks, nstocks) array
            Estimate of unconditional variance matrix
        cfree : bool
            Whether to leave C matrix free (True) or not (False)
        groups : list of lists of tuples
            Encoded groups of items
        cython : bool
            Whether to use Cython optimizations (True) or not (False)
        use_penalty : bool
            Whether to include penalty term in the likelihood

        Returns
        -------
        float
            The value of the minus log-likelihood function.
            If some regularity conditions are violated, then it returns
            some obscene number.

        """
        try:
            if model == 'standard':
                param = ParamStandard.from_theta(theta=theta, target=target,
                                                 nstocks=self.innov.shape[1],
                                                 restriction=restriction)
            elif model == 'spatial':
                param = ParamSpatial.from_theta(theta=theta, target=target,
                                                cfree=cfree,
                                                restriction=restriction,
                                                groups=groups)
            else:
                raise NotImplementedError('The model is not implemented!')

            # TODO: Temporary hack to exclude errors in optimization
            if isinstance(param, np.ndarray):
                return 1e10
            if param.constraint() >= 1:
                return 1e10
            # if param.uvar_bad():
            #     return 1e10

            args = [self.hvar, self.innov, param.amat, param.bmat, param.cmat]

            penalty = param.penalty() if use_penalty else 0

            if cython:
                filter_var(*args)
                nstocks = self.innov.shape[1]
                idxl = np.tril_indices(nstocks)
                idxu = np.triu_indices(nstocks)
                self.hvar[:, idxu[0], idxu[1]] = self.hvar[:, idxl[0], idxl[1]]
                return likelihood_gauss(self.hvar, self.innov) + penalty
            else:
                filter_var_python(*args)
                return likelihood_python(self.hvar, self.innov) + penalty
        except:
            return 1e10
Exemple #25
0
def try_spatial_combinations():
    """Try simulating spatial BEKK
    and estimating it with both spatial and standard.

    """
    use_target = False
    cfree = True
    restriction = 'full'
    nstocks = 3
    nobs = 2000
    groups = [(0, 1)]
    weights = ParamSpatial.get_weight(groups=groups, nitems=nstocks)
    ncat = weights.shape[0]
    alpha = np.array([.1, .01])
    beta = np.array([.5, .01])
    gamma = .0
    # A, B, C - n x n matrices
    avecs = np.ones((ncat+1, nstocks)) * alpha[:, np.newaxis]**.5
    bvecs = np.ones((ncat+1, nstocks)) * beta[:, np.newaxis]**.5
    dvecs = np.ones((ncat, nstocks)) * gamma**.5
    vvec = np.ones(nstocks)

    param_true = ParamSpatial.from_spatial(avecs=avecs, bvecs=bvecs,
                                           dvecs=dvecs, vvec=vvec,
                                           weights=weights)
    print(param_true)

    innov, hvar_true = simulate_bekk(param_true, nobs=nobs, distr='normal')

    bekk = BEKK(innov)

    # -------------------------------------------------------------------------
    # Estimate spatial

    result = bekk.estimate(param_start=param_true, use_target=use_target,
                           restriction=restriction, cfree=cfree,
                           model='spatial', weights=weights, method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target, cfree=cfree,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               cfree=cfree,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)

    # -------------------------------------------------------------------------
    # Estimate standard

    param_true = ParamStandard.from_abc(amat=param_true.amat,
                                        bmat=param_true.bmat,
                                        cmat=param_true.cmat)

    result = bekk.estimate(param_start=param_true, use_target=use_target,
                           restriction=restriction, cfree=cfree,
                           model='standard', weights=weights, method='SLSQP',
                           cython=True)

    print(result)

    theta_true = param_true.get_theta(use_target=use_target,
                                      restriction=restriction)
    theta_final = result.param_final.get_theta(use_target=use_target,
                                               restriction=restriction)
    norm = np.linalg.norm(theta_true - theta_final)

    print('\nParameters (true and estimated):\n',
          np.vstack([theta_true, theta_final]).T)
    print('\nEucledean norm of the difference = %.4f' % norm)
Exemple #26
0
    def test_get_theta_ghomo(self):
        """Test theta vector for spatial specification."""

        nstocks = 4
        groups = [[(0, 1), (2, 3)]]
        ncat = len(groups)
        alpha = [.01, .02, .03]
        beta = [.04, .05, .06]
        delta = [.07, .08]
        # A, B, C - n x n matrices
        avecs = np.ones((ncat+1, nstocks))
        bvecs = np.ones((ncat+1, nstocks))
        dvecs = np.ones((ncat+1, nstocks))
        avecs[0, :] *= alpha[0]
        avecs[1, :2] *= alpha[1]
        avecs[1, 2:] *= alpha[2]
        bvecs[0, :] *= beta[0]
        bvecs[1, :2] *= beta[1]
        bvecs[1, 2:] *= beta[2]
        dvecs[1, :2] *= delta[0]
        dvecs[1, 2:] *= delta[1]

        param = ParamSpatial.from_abdv(avecs=avecs, bvecs=bvecs, dvecs=dvecs,
                                       groups=groups)

        restriction = 'ghomo'
        use_target = True
        theta = [avecs[0], [avecs[1, 0]], [avecs[1, 2]],
                 bvecs[0], [bvecs[1, 0]], [bvecs[1, 2]]]
        theta = np.concatenate(theta)
        nparams = 2 * (nstocks + 2 * ncat)
        theta_exp = param.get_theta(restriction=restriction,
                                    use_target=use_target)

        self.assertEqual(nparams, theta_exp.size)
        self.assertEqual(nparams, theta.size)
        npt.assert_array_equal(theta, theta_exp)

        use_target = False
        theta = [avecs[0], [avecs[1, 0]], [avecs[1, 2]],
                 bvecs[0], [bvecs[1, 0]], [bvecs[1, 2]],
                 dvecs[0], [dvecs[1, 0]], [dvecs[1, 2]]]
        theta = np.concatenate(theta)
        nparams = 3 * (nstocks + 2 * ncat)
        theta_exp = param.get_theta(restriction=restriction,
                                    use_target=use_target)

        self.assertEqual(nparams, theta_exp.size)
        self.assertEqual(nparams, theta.size)
        npt.assert_array_equal(theta, theta_exp)

        cfree = True
        theta = [avecs[0], [avecs[1, 0]], [avecs[1, 2]],
                 bvecs[0], [bvecs[1, 0]], [bvecs[1, 2]],
                 param.cmat[np.tril_indices(param.cmat.shape[0])]]
        theta = np.concatenate(theta)
        nparams = 2 * (nstocks + 2 * ncat) + nstocks * (nstocks + 1) // 2
        theta_exp = param.get_theta(restriction=restriction, cfree=cfree)

        self.assertEqual(nparams, theta_exp.size)
        self.assertEqual(nparams, theta.size)
        npt.assert_array_equal(theta, theta_exp)