def test_Collocation_2(): # Full 2PBVP test problem # This is calculating the 4th eigenvalue of Mathieu's Equation # This problem contains an adjustable parameter. def odefun(t, X, p, const): return (X[1], -(p[0] - 2 * 5 * np.cos(2 * t)) * X[0]) def bcfun(t0, X0, q0, tf, Xf, qf, p, ndp, aux): return (X0[1], Xf[1], X0[0] - 1) algo = Collocation(odefun, None, bcfun) solinit = Solution() solinit.t = np.linspace(0, np.pi, 30) solinit.y = np.vstack( (np.cos(4 * solinit.t), -4 * np.sin(4 * solinit.t))).T solinit.dynamical_parameters = np.array([15]) out = algo.solve(solinit) assert abs(out.t[-1] - np.pi) < tol assert abs(out.y[0][0] - 1) < tol assert abs(out.y[0][1]) < tol assert abs(out.y[-1][0] - 1) < tol assert abs(out.y[-1][1]) < tol assert abs(out.dynamical_parameters[0] - 17.09646175) < tol
def guess_mapper(sol): n_c = len(constants_of_motion) if n_c == 0: return sol sol_out = Solution() sol_out.t = copy.copy(sol.t) sol_out.y = np.array([[fn(*sol.y[0]) for fn in states_2_states_fn]]) sol_out.q = sol.q if len(quads) > 0: sol_out.q = -0.0 * np.array([np.ones((len(quads)))]) sol_out.dynamical_parameters = sol.dynamical_parameters sol_out.dynamical_parameters[-n_c:] = np.array( [fn(*sol.y[0]) for fn in states_2_constants_fn]) sol_out.nondynamical_parameters = sol.nondynamical_parameters sol_out.aux = sol.aux return sol_out
def test_Shooting_3(): # This problem contains a parameter, but it is not explicit in the BCs. # Since time is buried in the ODEs, this tests if the BVP solver calculates # sensitivities with respect to parameters. def odefun(t, X, p, const): return 1 * p[0] def bcfun(t0, X0, q0, tf, Xf, qf, p, ndp, aux): return (X0[0] - 0, Xf[0] - 2) algo = Shooting(odefun, None, bcfun) solinit = Solution() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0], [0]]) solinit.dynamical_parameters = np.array([1]) out = algo.solve(solinit) assert abs(out.dynamical_parameters - 2) < tol
def load(self): """ Loads solution data using dill if not already loaded """ if not self.is_loaded: logging.info("Loading datafile " + self.filename + "...") out = loadmat(self.filename) if 'output' in out: out = out['output']['result'][0][0][0][0] soldata = out['solution']['phase'][0][0][0][0] # if 'solution' not in self._data: # self.is_loaded = False # logging.error("Solution missing in data file :"+self.filename) # raise RuntimeError("Solution missing in data file :"+self.filename) # if 'problem_data' not in self._data: # self.is_loaded = False # logging.error("Problem data missing in data file :"+self.filename) # raise RuntimeError("Problem data missing in data file :"+self.filename) # _sol = Solution() tf = max(soldata['time']) _sol.x = soldata['time'][:, 0] / tf _sol.y = np.r_[soldata['state'].T, soldata['costate'].T, np.ones_like(soldata['time']).T * tf] _sol.u = soldata['control'].T if 'tf' not in self.problem_data['state_list']: self.problem_data['state_list'] = tuple( self.problem_data['state_list']) + ('tf', ) _sol.arcs = ((0, len(_sol.x) - 1), ) if self._const is not None: _sol.aux = {'const': self._const} self._sol = [[_sol]] logging.info('Loaded solution from data file') self.is_loaded = True
def test_Shooting_1(): # Full 2PBVP test problem # This is the simplest BVP def odefun(t, X, p, const): return (X[1], -abs(X[0])) def bcfun(t0, X0, q0, tf, Xf, qf, p, ndp, aux): return (X0[0], Xf[0]+2) algo = Shooting(odefun, None, bcfun) solinit = Solution() solinit.t = np.linspace(0,4,2) solinit.y = np.array([[0,1],[0,1]]) out = algo.solve(solinit) assert out.y[0][0] < tol assert out.y[0][1] - 2.06641646 < tol assert out.y[-1][0] + 2 < tol assert out.y[-1][1] + 2.87588998 < tol assert out.t[-1] - 4 < tol assert abs(out.y[0][1] - solinit.y[0][1]) > tol assert abs(out.y[-1][0] - solinit.y[-1][0]) - 2 < tol
def test_Shooting_4(): # This problem contains a quad and tests if the bvp solver correctly # integrates the quadfun. def odefun(t, x, p, const): return -x[1], x[0] def quadfun(t, x, p, const): return x[0] def bcfun(t0, X0, q0, tf, Xf, qf, params, ndp, aux): return X0[0], X0[1] - 1, qf[0] - 1.0 algo = Shooting(odefun, quadfun, bcfun) solinit = Solution() solinit.t = np.linspace(0, np.pi / 2, 2) solinit.y = np.array([[1, 0], [1, 0]]) solinit.q = np.array([[0], [0]]) out = algo.solve(solinit) assert (out.y[0,0] - 0) < tol assert (out.y[0,1] - 1) < tol assert (out.q[0,0] - 2) < tol assert (out.q[-1,0] - 1) < tol