Exemple #1
0
def test_constant_vs_quadratic_tensile_slip():
    """ Compare constant and quadratic slip elements"""
    n_elements = 1
    mu = np.array([3e10])
    nu = np.array([0.25])
    elements = []
    element = {}
    L = 10000
    x1, y1, x2, y2 = bem2d.discretized_line(-L, 0, L, 0, n_elements)

    for i in range(0, x1.size):
        element["x1"] = x1[i]
        element["y1"] = y1[i]
        element["x2"] = x2[i]
        element["y2"] = y2[i]
        elements.append(element.copy())
    elements = bem2d.standardize_elements(elements)

    # Observation coordinates for far-field calculation
    n_pts = 100
    width = 20000
    x = np.linspace(-width, width, n_pts)
    y = np.linspace(-width, width, n_pts)
    x, y = np.meshgrid(x, y)
    x = x.flatten()
    y = y.flatten()

    # Just a simple forward model for the volume
    displacement_constant_slip = np.zeros((2, x.size))
    stress_constant_slip = np.zeros((3, x.size))
    displacement_quadratic_slip = np.zeros((2, x.size))
    stress_quadratic_slip = np.zeros((3, x.size))

    for i, element in enumerate(elements):
        displacement, stress = bem2d.displacements_stresses_constant_linear(
            x,
            y,
            element["half_length"],
            mu,
            nu,
            "constant",
            "slip",
            0,
            1,
            element["x_center"],
            element["y_center"],
            element["rotation_matrix"],
            element["inverse_rotation_matrix"],
        )
        displacement_constant_slip += displacement
        stress_constant_slip += stress

    for element in elements:
        quadratic_coefficients = np.array(
            [1, 1, 1])  # constant slip quadratic element
        displacement, stress = bem2d.displacements_stresses_quadratic_farfield_coefficients(
            quadratic_coefficients,
            x,
            y,
            element["half_length"],
            mu,
            nu,
            "slip",
            0,
            1,
            element["x_center"],
            element["y_center"],
            element["rotation_matrix"],
            element["inverse_rotation_matrix"],
        )
        displacement_quadratic_slip += displacement
        stress_quadratic_slip += stress

    np.testing.assert_almost_equal(displacement_constant_slip,
                                   displacement_quadratic_slip)
    np.testing.assert_almost_equal(stress_constant_slip,
                                   stress_quadratic_slip,
                                   decimal=1)
import bem2d
from importlib import reload
import bem2d
import matplotlib.pyplot as plt

bem2d = reload(bem2d)

# List of elements for forward model
n_elements = 2
mu = np.array([3e10])
nu = np.array([0.25])
elements = []
element = {}
L = 10000
# x1, y1, x2, y2 = bem2d.discretized_line(-L, 0, L, 0, n_elements)
x1, y1, x2, y2 = bem2d.discretized_line(-L, -L, L, L, n_elements)

for i in range(0, x1.size):
    element["x1"] = x1[i]
    element["y1"] = y1[i]
    element["x2"] = x2[i]
    element["y2"] = y2[i]
    elements.append(element.copy())
elements = bem2d.standardize_elements(elements)

# Observation coordinates for far-field calculation
n_pts = 100
width = 20000
x = np.linspace(-width, width, n_pts)
y = np.linspace(-width, width, n_pts)
x, y = np.meshgrid(x, y)
                           PARAMETERS["density"])  # Shear wave speed (m/s)
PARAMETERS["eta"] = PARAMETERS["mu"] / (
    2 * PARAMETERS["cs"])  # Radiation damping coefficient (kg / (m^2 * s))
PARAMETERS["d_c"] = 0.05  # state evolution length scale (m)
PARAMETERS["f_0"] = 0.6  # baseline coefficient of friction
PARAMETERS["block_velocity_x"] = 1e-9
PARAMETERS["block_velocity_y"] = 0
PARAMETERS["v_0"] = 1e-6  # reference velocity

# Create fault elements
N_ELEMENTS = 50
N_NODES = 3 * N_ELEMENTS
ELEMENTS_FAULT = []
ELEMENT = {}
L = 10000
x1, y1, x2, y2 = bem2d.discretized_line(-L, 0, L, 0, N_ELEMENTS)

# Modify y1, and y2 for a sinusoidal fault
amplitude = 0.0
y1 = amplitude * np.sin(2 * np.pi * x1 / L)
y2 = amplitude * np.sin(2 * np.pi * x2 / L)

for i in range(0, x1.size):
    ELEMENT["x1"] = x1[i]
    ELEMENT["y1"] = y1[i]
    ELEMENT["x2"] = x2[i]
    ELEMENT["y2"] = y2[i]
    ELEMENT["a"] = 0.015  # frictional a parameter ()
    ELEMENT["b"] = 0.020  # frictional b parameter ()
    ELEMENT["sigma_n"] = 50e6  # normal stress (Pa)
    ELEMENTS_FAULT.append(ELEMENT.copy())
bem2d = reload(bem2d)
plt.close("all")

PLOT_ELEMENTS = False

# Material properties
mu = 30e9
nu = 0.25

# Define elements
elements_surface = []
elements_fault = []
element = {}

# Create topographic free surface elements
x1, y1, x2, y2 = bem2d.discretized_line(-10e3, 0, 10e3, 0, 60)
y1 = -1e3 * np.arctan(x1 / 1e3)
y2 = -1e3 * np.arctan(x2 / 1e3)
for i in range(0, x1.size):
    element["x1"] = x1[i]
    element["y1"] = y1[i]
    element["x2"] = x2[i]
    element["y2"] = y2[i]
    element["name"] = "surface"
    elements_surface.append(element.copy())
elements_surface = bem2d.standardize_elements(elements_surface)

# Create constant slip curved fault
x1, y1, x2, y2 = bem2d.discretized_line(-7e3, 0e3, 0, 0, 30)
y1 = 3e3 * np.arctan(x1 / 1e3)
y2 = 3e3 * np.arctan(x2 / 1e3)
import bem2d.newton_rate_state

bem2d = reload(bem2d)
plt.close("all")
""" Taken from Ben's 1d example:
    http://tbenthompson.com/post/block_slider/ """

# TODO: Save information from rupture problem as .pkl/.npz
# TODO: Try rupture problem with variations in a-b.  Do I have to pass elements_* dict to do this?

elements_fault = []
element = {}
L = 10000
mu = 3e10
nu = 0.25
x1, y1, x2, y2 = bem2d.discretized_line(-L, 0, L, 0, 50)

for i in range(0, x1.size):
    element["x1"] = x1[i]
    element["y1"] = y1[i]
    element["x2"] = x2[i]
    element["y2"] = y2[i]
    elements_fault.append(element.copy())
elements_fault = bem2d.standardize_elements(elements_fault)
n_elements = len(elements_fault)

# Constant slip partial derivatives
slip_to_displacement, slip_to_traction = bem2d.constant_linear_partials(
    elements_fault, elements_fault, "slip", mu, nu)

# Quadratic slip partial derivative
Exemple #6
0
nu = 0.25
n_pts = 102
width = 5
x = np.linspace(-width, width, n_pts)
y = np.linspace(-width, width, n_pts)
x, y = np.meshgrid(x, y)
x = x.flatten()
y = y.flatten()

# Define elements
elements_surface = []
elements_fault = []
element = {}

# Traction free surface
x1, y1, x2, y2 = bem2d.discretized_line(-5, 0, 5, 0, 20)
for i in range(0, x1.size):
    element["x1"] = x1[i]
    element["y1"] = y1[i]
    element["x2"] = x2[i]
    element["y2"] = y2[i]
    element["name"] = "surface"
    elements_surface.append(element.copy())
elements_surface = bem2d.standardize_elements(elements_surface)

# Constant slip fault
x1, y1, x2, y2 = bem2d.discretized_line(-1, -1, 0, 0, 1)
for i in range(0, x1.size):
    element["x1"] = x1[i]
    element["y1"] = y1[i]
    element["x2"] = x2[i]
Exemple #7
0
import bem2d
import matplotlib.pyplot as plt

bem2d = reload(bem2d)

# Material and geometric constants
plt.close("all")
SLIP_TYPE = "tensile_slip"
print(SLIP_TYPE)
mu = 3e10
nu = 0.25
n_elements = 10
elements = []
element = {}
L = 10000
x1, y1, x2, y2 = bem2d.discretized_line(-L, 0, L, 0, n_elements)

for i in range(0, x1.size):
    element["x1"] = x1[i]
    element["y1"] = y1[i]
    element["x2"] = x2[i]
    element["y2"] = y2[i]
    elements.append(element.copy())
elements = bem2d.standardize_elements(elements)

# Convert to dictionary of lists
elements_DL = pd.DataFrame(elements).to_dict("list")
# Convert back to list of dictionaries
elements_LD = pd.DataFrame(elements_DL).to_dict("records")
print(elements == elements_LD)