Exemple #1
0
def test_optimization_problem():
    parameter1 = Parameter(
        name="param1", category="categorical", search_space={"values": ["a", "b"]}
    )
    parameter2 = Parameter(name="param2", category="uniform", search_space={"low": 1, "high": 2})
    parameters = [parameter1, parameter2]
    optimization_problem = OptimizationProblem(parameters)
    observation1 = Observation(sample={"param1": "a", "param2": 1.5}, loss=1.5)
    optimization_problem.add_observation(observation1)
    observation2 = Observation(sample={"param1": "b", "param2": 1.8}, loss=1.8)
    optimization_problem.add_observation(observation2)
    observation3 = Observation(sample={"param1": "b", "param2": 1.05}, loss=0.1)
    optimization_problem.add_observation(observation3)

    assert type(optimization_problem.parameters) == list
    assert len(optimization_problem.observations) == 3
    assert optimization_problem.parameters_name == set(["param1", "param2"])
    assert observation1.sample in optimization_problem.samples
    assert len(optimization_problem.samples) == 3
    assert optimization_problem.best_sample == {"param1": "b", "param2": 1.05}
    assert optimization_problem.sorted_observations[0].sample == {"param1": "b", "param2": 1.05}
    assert optimization_problem.finite is False
    assert len(optimization_problem.find_observations({"param1": "b", "param2": 1.05})) == 1
    a, b = optimization_problem.observations_quantile(0.5)
    assert len(a) == 1
    assert len(b) == 2
    assert optimization_problem.get_best_k_samples(1)[0].sample == {"param1": "b", "param2": 1.05}
Exemple #2
0
def test_parameter_init():
    parameter = Parameter("alpha", "uniform", {"high": 5, "low": 0})
    assert parameter.name == "alpha"
    assert parameter.category == "uniform"
    assert parameter.search_space == {"high": 5, "low": 0, "step": None}
    assert parameter.check_value(2) is True
    assert len(parameter.draw(size=10)) == 10
    assert parameter.pdf(np.array([2.5])) == np.array([1 / 5])
    assert str(parameter) == "alpha"
Exemple #3
0
def test_parameter_from_dict_bad_category():
    data = {
        "name": "alpha",
        "category": "lol",
        "search_space": {
            "high": 5,
            "low": 0
        }
    }
    with pytest.raises(ValidationError):
        Parameter.from_dict(data)
Exemple #4
0
def test_parameter_from_dict():
    data = {
        "name": "alpha",
        "category": "uniform",
        "search_space": {
            "high": 5,
            "low": 0
        }
    }
    parameter = Parameter.from_dict(data)
    assert parameter.name == "alpha"
    assert parameter.category == "uniform"
    assert parameter.search_space == {"high": 5, "low": 0, "step": None}
    assert parameter.check_value(2) is True
    assert len(parameter.draw(size=10)) == 10
    assert parameter.pdf(np.array([2.5])) == np.array([1 / 5])
Exemple #5
0
def test_parameter_from_dict_missing_key():
    data = {"name": "alpha", "search_space": {"high": 5, "low": 0}}
    with pytest.raises(ValidationError):
        Parameter.from_dict(data)
Exemple #6
0
def test_parameter_from_dict_bad_format():
    data = [1, 2]
    with pytest.raises(ValidationError):
        Parameter.from_dict(data)