import bentoml svc = bentoml.Service("test.bentob")
name="multi_ndarray_pred_runner", batch=True, ) echo_multi_ndarray_pred_runner = bentoml.picklable_model.load_runner( "sk_model", method_name="echo_multi_ndarray", name="echo_multi_ndarray_pred_runner", batch=True, ) svc = bentoml.Service( name="general_sync", runners=[ json_echo_runner, ndarray_pred_runner, dataframe_pred_runner, file_pred_runner, multi_ndarray_pred_runner, echo_multi_ndarray_pred_runner, ], ) @svc.api(input=JSON(), output=JSON()) def echo_json(json_obj: JSONSerializable) -> JSONSerializable: return json_echo_runner.run(json_obj) @svc.api( input=JSON(pydantic_model=_Schema), output=JSON(),
import bentoml # import bentoml.sklearn # from bentoml.io import NumpyNdarray # iris_model_runner = bentoml.sklearn.load_runner('iris_classifier:latest') svc = bentoml.Service("test.simplebento", # runners=[iris_model_runner] ) # @svc.api(input=NumpyNdarray(), output=NumpyNdarray()) # def predict(request_data: np.ndarray): # return iris_model_runner.predict(request_data) # For simple use cases, only models list is required: # svc.bento_options.models = [] # svc.bento_files.include = ["*"] # svc.bento_env.pip_install = "./requirements.txt"