Exemple #1
0
        def _resource_apply_op(self, grad, var, indices=None):
            # 更新判据
            cond = K.equal(self.iterations % self.grad_accum_steps, 0)
            # 获取梯度
            ag = self.get_slot(var, 'ag')

            old_update = K.update

            def new_update(x, new_x):
                new_x = K.switch(cond, new_x, x)
                return old_update(x, new_x)

            K.update = new_update
            ag_t = ag / self.grad_accum_steps
            op = super(new_optimizer, self)._resource_apply_op(ag_t, var)
            K.update = old_update

            # 累积梯度
            with tf.control_dependencies([op]):
                ag_t = K.switch(cond, K.zeros_like(ag), ag)
                with tf.control_dependencies([K.update(ag, ag_t)]):
                    if indices is None:
                        ag_t = K.update(ag, ag + grad)
                    else:
                        ag_t = self._resource_scatter_add(ag, indices, grad)

            return ag_t
Exemple #2
0
    def _resource_apply_op(self, grad, var, indices=None):
        # 准备变量
        var_dtype = var.dtype.base_dtype
        lr_t = self._decayed_lr(var_dtype)
        m = self.get_slot(var, 'm')
        v = self.get_slot(var, 'v')
        beta_1_t = self._get_hyper('beta_1', var_dtype)
        beta_2_t = self._get_hyper('beta_2', var_dtype)
        epsilon_t = K.cast(self.epsilon, var_dtype)
        local_step = K.cast(self.iterations + 1, var_dtype)
        beta_1_t_power = K.pow(beta_1_t, local_step)
        beta_2_t_power = K.pow(beta_2_t, local_step)

        # 更新公式
        if indices is None:
            m_t = K.update(m, beta_1_t * m + (1 - beta_1_t) * grad)
            v_t = K.update(v, beta_2_t * v + (1 - beta_2_t) * grad**2)
        else:
            mv_ops = [K.update(m, beta_1_t * m), K.update(v, beta_2_t * v)]
            with tf.control_dependencies(mv_ops):
                m_t = self._resource_scatter_add(m, indices,
                                                 (1 - beta_1_t) * grad)
                v_t = self._resource_scatter_add(v, indices,
                                                 (1 - beta_2_t) * grad**2)

        # 返回算子
        with tf.control_dependencies([m_t, v_t]):
            if self.bias_correction:
                m_t = m_t / (1. - beta_1_t_power)
                v_t = v_t / (1. - beta_2_t_power)
            var_t = var - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
            return K.update(var, var_t)
Exemple #3
0
        def _resource_apply_op(self, grad, var, indices=None):
            op = super(new_optimizer,
                       self)._resource_apply_op(grad, var, indices)

            k, alpha = self.steps_per_slow_update, self.slow_step_size
            cond = K.equal(self.iterations % k, 0)
            slow_var = self.get_slot(var, 'slow_var')
            slow_var_t = slow_var + alpha * (var - slow_var)

            with tf.control_dependencies([op]):
                slow_update = K.update(slow_var,
                                       K.switch(cond, slow_var_t, slow_var))
                with tf.control_dependencies([slow_update]):
                    copy_update = K.update(var, K.switch(cond, slow_var, var))

            return copy_update
Exemple #4
0
        def get_updates(self, loss, params):
            # 更新判据
            cond = K.equal(self.iterations % self.grad_accum_steps, 0)
            cond = K.cast(cond, K.floatx())
            # 获取梯度
            grads = self.get_gradients(loss, params)
            self.accum_grads = [
                K.zeros(K.int_shape(p),
                        dtype=K.dtype(p),
                        name='accum_grad_%s' % i) for i, p in enumerate(params)
            ]

            old_update = K.update

            def new_update(x, new_x):
                new_x = cond * new_x + (1 - cond) * x
                return old_update(x, new_x)

            K.update = new_update
            updates = super(new_optimizer, self).get_updates(loss, params)
            K.update = old_update

            # 累积梯度
            with tf.control_dependencies(updates):
                accum_updates = [
                    K.update(ag, g + (1 - cond) * ag)
                    for g, ag in zip(grads, self.accum_grads)
                ]

            return accum_updates
Exemple #5
0
        def get_updates(self, loss, params):
            updates = super(new_optimizer, self).get_updates(loss, params)

            k, alpha = self.steps_per_slow_update, self.slow_step_size
            cond = K.equal(self.iterations % k, 0)
            slow_vars = [
                K.zeros(K.int_shape(p),
                        dtype=K.dtype(p),
                        name='slow_var_%s' % i) for i, p in enumerate(params)
            ]

            with tf.control_dependencies(updates):
                slow_updates = [
                    K.update(q, K.switch(cond, q + alpha * (p - q), q))
                    for p, q in zip(params, slow_vars)
                ]
                with tf.control_dependencies(slow_updates):
                    copy_updates = [
                        K.update(p, K.switch(cond, q, p))
                        for p, q in zip(params, slow_vars)
                    ]

            return copy_updates